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Introduction

Geographic Information Systems (GIS) have become indispensable tools used in different 
disciplines to analyze and manage spatial data. GIS applications have an important place 
in many areas such as urban planning, environmental monitoring, transportation, and 
disaster management. The rapid increase in the amount of spatial data from satellites, 
sensors, and mobile devices has increased the need for advanced analytical techniques 
to make sense of these large datasets (Villarroya et al., 2022). In recent years, data-
driven approaches have emerged as powerful methods that enhance the capabilities of 
GIS and have assumed an important role in more accurate predictions, in-depth analyses, 
and effective decision-making processes (Reichstein et al., 2019). Data-driven analytical 
techniques analyze spatial data using the power of data science, machine learning, 
artificial intelligence, and statistical methods. These techniques offer new perspectives 
that traditional GIS methods may not be able to capture by identifying patterns, trends, 
and relationships within large datasets. In this context, through the integration of data 
science with GIS, organizations can explore new dimensions in spatial data analysis, 
optimize resource allocation, and find solutions to complex spatial problems that could 
not be solved before (Cao et al., 2024).

Historically, GIS was mostly used for mapping and basic spatial analyses and was 
developed based on simple geographic techniques with manually collected data (Ahasan 
& Hossain, 2021). However, with the increase in high-resolution spatial data obtained 
through satellites, drones, and other remote sensing technologies, GIS has become a more 
dynamic and complex system. Today, GIS is not limited to the production of static maps 
but is used in a much wider range of applications such as real-time analysis, predictive 
modeling, and data visualization. This evolution has accelerated with the merger of 
GIS and data science. As spatial datasets have increased in both size and complexity, 
traditional GIS tools have struggled to manage and analyze these large information 
sources. Data-driven techniques such as machine learning, deep learning, and advanced 
statistical methods have filled this gap by providing powerful tools to process, analyze, 
and make sense of large-scale spatial data. These methods enable GIS professionals 
to gain valuable insights, model future scenarios, and make data-driven decisions (Li, 
Zhao, et al., 2022). Accordingly, big data plays a central role in modern GIS applications. 
Big data refers to data sets that are too large or complex to be managed by traditional 
data processing methods (Piovani & Bonovas, 2022). In the context of GIS, big data 
comes from various sources such as satellite imagery, sensor networks, mobile devices, 
social media, and Internet of Things (IoT) devices. These data streams provide extensive 
information about the physical world, such as land use patterns, weather, transport 
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flows, and environmental changes. Thus, data-driven analytical techniques enable more 
comprehensive and accurate analyses using big data. In particular, combining spatial data 
with other types of data, such as demographic, economic, or environmental information, 
can help scientists develop models that reflect the complexity of real-world systems. 
For example, in urban planning, big data can be used to analyze traffic flows, predict 
congestion hotspots, and optimize public transport routes. In environmental monitoring, 
big data can be used to monitor deforestation, assess the impact of climate change, and 
model the spread of pollutants. In this direction, big data also enables real-time analyses 
in GIS. This is especially critical for disaster management and emergency response 
applications (Sarker et al., 2020; Shah et al., 2019). By analyzing live data from sensors, 
drones, and other devices, authorities can monitor evolving situations such as floods or 
forest fires and make timely decisions to minimize damage. One of the most important 
developments in data-driven GIS is the integration of machine learning algorithms. 
Machine learning is a sub-branch of artificial intelligence that enables computers to learn 
from data and make predictions or decisions without being explicitly programmed (Yue 
et al., 2020). In GIS, machine learning algorithms are used to detect patterns, classify 
data, and make predictions based on spatial data. For example, machine learning models 
can be trained to classify land cover types from satellite imagery, detect urban growth 
patterns, or predict the probability of natural disasters such as floods or landslides. 
These models can process large amounts of spatial data and identify complex patterns 
that are difficult or impossible to detect manually by humans. Furthermore, machine 
learning can also be used for predictive modeling in GIS; this includes applications such 
as predicting future land use changes, forecasting population growth or modeling the 
impact of climate change on ecosystems.

Figure 1
Data-Driven Analytical Techniques in GIS Schema

The integration of data-driven techniques with GIS increases the accuracy of spatial 
analyses, accelerates decision-making processes, and plays an active role in solving 
wider spatial problems. With these technologies, cities can be planned more efficiently, 
natural resources can be better protected and the impact of environmental changes can 
be monitored more accurately. As a result, this evolution in GIS and data science is 
opening new horizons in the world of spatial analysis and helping to shape the cities, 
environment, and infrastructure of the future. Accordingly, this research focuses on 
the basic components and application areas of data-driven analytical techniques in the 
context of Geographic Information Systems (GIS). In this context, data-driven analytical 
techniques in the field of GIS are examined, and research on future trends is presented 
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by making in-depth analyses of big data integration, geo statistics, remote sensing, deep 
learning, and data visualization (Figure 1). The study also discusses the challenges faced 
in data-driven GIS analyses and potential future research areas.

Foundations of Data-Driven GIS Analytics
Geographic Information Systems (GIS) are comprehensive tools for analyzing, 
managing, and visualizing spatial data. GIS plays a critical role in many areas such 
as urban planning, natural resource management, transport systems, environmental 
monitoring, and disaster management. Traditional uses of GIS were limited to mapping 
and basic spatial analyses, but in recent years, with the development of data science and 
big data analysis, GIS has become more advanced and dynamic. Data-driven analytical 
techniques have significantly expanded the potential of GIS for spatial data analysis and 
provided powerful tools for making sense of large data sources. The fundamentals of 
data-driven GIS analysis involve the combination of disciplines such as data science, 
statistics, machine learning, and artificial intelligence to analyze spatial datasets. These 
analytical approaches enable deeper insights, more accurate predictions, and optimized 
decision-making processes on spatial data. Especially the use of big data sources allows 
us to understand why data-driven analytical techniques have become so important in 
GIS.

Fundamentals of GIS and Spatial Data
Geographic Information Systems is an integrated software platform used to collect, 
manage, analyze, and visualize spatial data (Eccles et al., 2019). Spatial data is a type of 
data that expresses the location of an object or event and is usually defined by geographic 
coordinates. These data are used for mapping and spatial analysis. The foundations of 
GIS are based on vector and raster data types. Vector data are expressed in geometric 
shapes such as points, lines, and polygons, while raster data are continuous data types 
consisting of pixels such as satellite images or digital elevation models. Traditional GIS 
tools were used to process this data and perform basic mapping operations. However, 
in today’s big data era, the huge amount of spatial data from various sources such as 
satellite imagery, sensors, mobile devices, and social media requires more complex 
analysis techniques. This is where data science and data-driven analytical techniques 
come into play.

Data Science and GIS Integration
Data science is an interdisciplinary field that aims to obtain meaningful insights by 
analyzing large data sets and includes various methods such as statistics, data mining, 
machine learning, and artificial intelligence. The integration of data science with 
GIS allows spatial data to be analyzed in a more complex way and to obtain more 
efficient results. Data-driven GIS analyses focus on discovering patterns, trends, and 
spatial relationships by processing spatial data collected from large data sources. For 
example, in urban planning, data science methods can help make more efficient planning 
decisions by analyzing numerous factors such as traffic flows, population densities, and 
environmental changes. Similarly, in environmental monitoring applications, more 
accurate predictions can be made using big data sources to analyze the effects of climate 
change. Data science, combined with GIS, contributes to solving broader problems by 
increasing the accuracy of spatial analyses.

The Role of Big Data
Big data refers to data sets that are too large and complex to be managed by traditional 
methods. Today, GIS is an important tool for analyzing the huge amount of spatial 
data coming from big data sources. Big data sources are usually collected from sensor 
networks, satellite imagery, mobile devices, and social media platforms. These data 
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provide a large knowledge base that can be used for spatial analyses. Data-driven GIS 
analyses provide the integration of big data and GIS. This integration helps to make better 
decisions in various application areas, from urban planning to environmental monitoring. 
For example, satellite imagery, when combined with data from weather sensors, can lead 
to more accurate and timely decisions in disaster management. Similarly, traffic data 
from mobile devices can be used to optimize urban transport systems.

Machine Learning and GIS
Machine learning is a technique frequently used in data-driven GIS analyses. Machine 
learning enables computers to learn from specific datasets and make future predictions or 
decisions. The combination of GIS and machine learning is highly effective for detecting 
complex patterns in spatial data and building predictive models. Machine learning is 
used in various GIS applications such as the classification of satellite imagery, detection 
of land use changes, and prediction of natural disaster risks. By processing large amounts 
of spatial data, these algorithms can reveal complex relationships that humans cannot 
detect manually. In addition, machine learning models can also be used to model future 
scenarios and make predictions in various fields.

Geostatistics and GIS
Geostatistics is another important method used to perform statistical analyses on 
spatial data. Geostatistical methods in GIS are used to analyze the distribution of 
spatial variables in a given region and to understand the relationships between these 
variables. Geostatistical models, such as kriging, are one of the widely used techniques 
for predicting and modeling spatial data. Geostatistical methods play an important role, 
especially in environmental analyses and natural resource management. For example, 
geostatistics is used to estimate the productivity of agricultural areas or to model the 
distribution of water resources in a region. Such methods, when combined with GIS, 
allow for more accurate spatial analyses.

Data Visualisation and GIS
Data visualization is an important component of GIS analyses. Visualization of spatial 
data allows users to better understand the data and interpret the results of analysis more 
effectively. Maps, graphs, and 3D models are common tools used in the visualization of 
spatial data. Data visualization is especially important in decision-making processes. By 
visualizing the results of spatial analyses, decision-makers can better understand what 
kind of changes they need to make in a particular area. For example, urban planners can 
visualize data to map how busy certain roads are to optimize traffic flows. Similarly, 
disaster management experts can visualize risk zones to analyze the effects of natural 
disasters.

Big Data Integration and Spatial Data Analysis Techniques
Big data integration has revolutionized spatial data analysis, increasing the efficiency 
and effectiveness of modern Geographic Information Systems (GIS) (Al-Yadumi et al., 
2021; Huang & Wang, 2020; Werner, 2019). GIS is used in many sectors as a powerful 
tool for the collection, analysis, and visualization of spatial data. GIS, which has a wide 
range of applications such as urban planning, natural resource management, transport, 
environmental monitoring, and disaster management, has become capable of solving 
more complex problems by being supported by big data sources. The increase in data from 
satellite images, sensor data, social media, and mobile devices has led to the necessity 
of integrating big data analysis techniques with GIS. In this integration process, various 
software that provides big data management and analysis (Table 1) are combined with 
GIS to enable more comprehensive spatial analyses. Platforms such as Apache Hadoop 
and Apache Spark are prominent in storing and processing large data sets. They are 
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particularly suitable for processing high-volume data sources such as satellite imagery 
and sensor data. For example, Apache Spark’s distributed processing capabilities enable 
data sets to be analyzed quickly and monitor traffic density or environmental changes in 
cities. Without such data processing tools, performing spatial analyses on large datasets 
would be difficult and time-consuming.

Cloud-based platforms also play an important role in GIS and big data integration. 
Solutions such as Google BigQuery and Amazon Web Services (AWS) enable large 
data sets to be quickly stored and analyzed in the cloud environment (Al-Yadumi et 
al., 2021). For example, studies such as population density and traffic analysis in urban 
planning projects can be carried out based on data stored in such cloud-based systems. 
While these platforms accelerate data analysis with SQL-like queries, they also facilitate 
remote access to data by users. Solutions for the integration of GIS software with big 
data include platforms such as ESRI ArcGIS and Google Earth Engine. ESRI ArcGIS 
enables visualization and analysis of large volumes of geographic data by providing 
strong integration with big data through modules such as GeoAnalytics Server (Mai 
et al., 2019). Google Earth Engine, on the other hand, focuses on analyzing satellite 
data and provides a powerful platform for monitoring environmental changes and urban 
growth analyses. Such platforms not only accelerate data analysis but also enable visual 
analyses so that decision-makers can gain deeper insights into spatial data. Database 
extensions such as the open-source GIS platform QGIS and PostGIS have a wide range 
of uses in big data analyses. QGIS offers flexibility in spatial analyses by integrating with 
many data sources. PostGIS, on the other hand, allows spatial queries on large data sets, 
which enables high-performance data processing, especially in areas such as urban data 
management and environmental monitoring (Janisio-Pawłowska & Pawłowski, 2024). 
Open-source solutions are often preferred in small and medium-sized projects due to 
their cost advantage and flexibility. Tools such as GeoMesa and GeoSpark, which work 
with distributed databases, are ideal for spatial analysis on large datasets. GeoMesa is 
compatible with distributed databases such as Apache Accumulo, Cassandra, and HBase 
when performing spatial analysis on large databases. This can be used in areas such as 
real-time monitoring of sensor data. GeoSpark, on the other hand, runs on Apache Spark, 
enabling high-speed data processing in areas such as traffic density analysis and disaster 
area analysis. Such tools are especially advantageous in dynamic environments with 
continuous data flow (Dritsas et al., 2020).

Real-time analysis and visualization tools are also an important part of big data and GIS 
integration. Software such as Tableau and MapD (OmniSci) offer powerful solutions 
for spatial data visualization. For example, Tableau provides a user-friendly interface 
for urban planning, disaster management, and visualization of environmental changes 
through big data integration (Bivand, 2022). These tools facilitate the understanding of 
spatial data through maps, graphs, and interactive visuals. MapD, which offers GPU-
accelerated data processing, stands out with its real-time data processing performance 
in environmental monitoring and traffic density analyses. Advanced analysis techniques 
such as machine learning and deep learning further advance GIS applications with big 
data integration. In big data analysis, machine learning techniques provide important 
contributions in areas such as predicting crime rates in cities or predicting traffic 
density by creating predictive models. Deep learning is used in projects such as disaster 
management and environmental change monitoring that require more complex data 
analyses (Sun & Scanlon, 2019). For example, deep learning models trained on satellite 
imagery can analyze the spatial distribution of forest fires and provide rapid intervention 
to the authorities. Such techniques allow for more accurate predictions when working on 
large data sets. Finally, database solutions such as IBM Db2 Big SQL enable spatial data 
analysis through SQL-based queries with big data sources. 
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Table 1
Big Data Software Integrated into Geographic Information Systems and Features

Software / Tool Scope Features Use Cases

Apache 
Hadoop

Big data storage 
and processing

Data storage with HDFS 
(Hadoop Distributed File 
System), data processing 
with MapReduce

Satellite data processing, 
sensor data storage, urban 
data analysis

Apache Spark Big data analytics 
and processing

Distributed data processing, 
stream analytics, GIS data 
analysis with PySpark and 
Scala support

Real-time analytics, 
environmental monitoring, 
disaster management

Google 
BigQuery

Big data analysis 
and management

SQL-like queries for big data 
analysis, high-speed data 
processing

Urban planning, traffic 
density analysis, 
environmental data 
analysis

ESRI ArcGIS GIS platform
Geographic data integration, 
data visualization, big data 
modules (GeoAnalytics 
Server)

Satellite imagery, urban 
planning, environmental 
monitoring, disaster 
management

Google Earth 
Engine

Satellite and 
environmental 
data analytics

Processing large satellite 
data, ready-to-use datasets 
for environmental analysis

Deforestation, water 
resources monitoring, 
urban growth analysis

Amazon Web 
Services (AWS) 
S3

Cloud data storage 
and big data 
management

Storage and processing of 
large datasets, API support 
for GIS software integration

Satellite data storage, real-
time urban data processing

Azure Synapse 
Analytics

Big data 
integration and 
analytics

Distributed data processing, 
machine learning models for 
GIS data analysis

Environmental change 
monitoring, urban 
infrastructure analysis, 
disaster management

QGIS Open-source GIS 
platform

Integration with big data 
modules, data extraction 
from various big data sources

Urban planning, 
environmental change 
analysis, geographic 
distribution modeling

PostGIS
Database 
extension for 
geographic data

Spatial queries on large 
datasets, data storage, high-
performance geographic data 
processing

Urban data management, 
environmental monitoring, 
geographic data storage

GeoMesa Spatial analysis 
for big data

Spatial analysis in distributed 
databases (compatible 
with Apache Accumulo, 
Cassandra, and HBase)

Sensor data analysis, real-
time monitoring, disaster 
management

GeoSpark 
(Apache 
Sedona)

Spatial analysis on 
large datasets

Spatial data processing on 
Apache Spark, parallel GIS 
data analysis

Traffic density analysis, 
urban planning, disaster 
area analysis

Hortonworks 
Data Platform

Big data 
integration

GIS data processing on the 
Hadoop ecosystem, real-time 
analytics

Satellite imagery, sensor 
data, urban infrastructure

Tableau Data visualization
Big data integration with 
spatial data visualization, 
map-based data analysis

Urban planning, disaster 
management, visualization 
of environmental changes

MapD 
(OmniSci)

GPU-accelerated 
big data analytics 
and GIS

Real-time spatial data 
processing and visualization, 
high-speed data querying

Environmental monitoring, 
disaster management, 
traffic density analysis

IBM Db2 Big 
SQL

Structured and 
unstructured big 
data analysis

SQL-based spatial data 
analysis on Hadoop and other 
data sources

Urban infrastructure 
analysis, environmental 
data integration, GIS 
analysis on big data
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IBM Db2 Big SQL, which can be integrated with Hadoop and other big data sources, is 
used in projects such as urban infrastructure analysis and environmental data integration. 
Such solutions add value to GIS applications from a big data perspective by providing 
flexibility in analyzing both structured and unstructured data.

In conclusion, big data integration and spatial data analysis techniques are important 
developments that expand the potential of GIS and offer solutions to the complex 
spatial problems of the modern world. The increase in big data sources has made it 
necessary to go beyond traditional GIS methods and get support from fields such as data 
science, machine learning, and deep learning. Integration of these techniques with GIS 
enables more accurate analyses, faster decision-making processes, and solving wider 
spatial problems. In the future, deeper integration of big data and GIS will enable more 
complex analyses and more effective decisions in many areas from urban planning to 
environmental monitoring. Big data-driven GIS will help shape the cities, environment, 
and infrastructure of the future, contributing to the sustainable development of modern 
societies.

Geostatistics and Machine Learning in GIS
Geographical Information Systems (GIS) is a powerful tool that enables analyzing spatial 
data in many fields and drawing meaningful conclusions from these data. In order to use 
the power of GIS more effectively, different methods and techniques are utilized. Among 
these methods, geostatistics and machine learning techniques, which have a wide range 
of applications in data science, stand out. While geostatistics tries to understand spatial 
patterns and variability by analyzing the relationships between spatial data, machine 
learning provides the ability to learn data patterns and predict future events or situations. 
The harmonious use of both methods in GIS makes it possible to reach faster and more 
accurate solutions to complex spatial problems.

Geostatistical methods often examine the spatial distributions of data, allowing us to make 
predictions in missing or unsampled regions. These methods utilize statistical models 
to explore the trends and spatial dependencies of a given area. Geostatistical methods, 
which are frequently used in the analysis of environmental variables and management of 
natural resources, enable detailed analyses in many areas from environmental pollution 
to water quality (Hasan et al., 2021). The table below summarises the main geostatistical 
methods used in the context of GIS and the areas in which these methods are prominent 
(Table 2). When the table is examined in detail, Kriging, one of the geostatistics 
methods, can generate predictions for non-sampled locations by analyzing the spatial 
dependence between data points. This method is especially effective in applications 
such as determining the distribution of air pollution throughout the city and creating 
water quality maps (Miao & Wang, 2024). Thiessen Polygons creates regions specific 
to each data point and enables analyses based on the distance between these points. 
It is frequently used in precipitation measurements and population density analyses. 
IDW (Inverse Distance Weighting) determines the spatial distribution of environmental 
variables by giving more weight to data points closer to the location to be predicted; 
it is a preferred method for creating temperature maps and analyzing terrain features. 
Semivariogram analyses spatial dependence over distance, while Spline Interpolation 
is used to create a continuous surface from data points and is useful in analyses such as 
elevation maps (Li, Baorong, et al., 2022). 

Spatial Autocorrelation analyses the distribution of similar values using Moran’s I, thus 
contributing to the identification of spatial patterns such as water pollution or vegetation 
cover. Finally, Trend Surface Analysis allows us to understand large-scale spatial trends 
and is used to analyze issues such as land slope or temperature variations (Love et al., 
2022).
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Table 2
Geostatistical Methods for Spatial Data Analysis in GIS

Method Description Application Areas

Kriging
An interpolation technique for 
spatially estimating data points in 
geographic datasets

Air pollution distribution, water 
quality analysis, soil properties

Thiessen Polygons Mapping and defining unique 
regions for each data point

Rainfall measurement data, 
population density analysis, service 
area determination

IDW (Inverse 
Distance Weighting)

Distributes values from points to 
surrounding areas, giving weights 
based on distance

Temperature maps, land properties, 
pollutant distribution

Semivariogram
Examines spatial variability and 
determines spatial relationships 
between data points

Soil moisture analysis, spatial 
analysis of climate variables

Spline Interpolation Used to create a continuous surface 
from data points

Surface modeling, elevation maps, 
detailed terrain analysis

Spatial 
Autocorrelation 
(Moran’s I)

Analyzes how data is distributed 
spatially and identifies similarities

Water pollution analysis, vegetation 
distribution, urban density analysis

Trend Surface 
Analysis

Used to understand trends within a 
specific area

Terrain slope and elevation analysis, 
temperature and rainfall trends

Table 3
Machine Learning Techniques for GIS Applications

Machine 
Learning 
Method

Description Application Areas

Support Vector 
Machines (SVM)

Used for classification and regression 
analysis; finds the optimal hyperplane to 
separate data

Land classification, natural disaster 
risk analysis

Decision Trees Classifies data by branching based on 
specific decision rules

Environmental risk analysis, water 
resources assessment

Random Forests
A model formed by combining multiple 
decision trees, commonly used for 
classification and regression

Land cover classification, 
deforestation analysis, urban 
development analysis

K-Nearest 
Neighbors 
(KNN)

Classifies data based on similarity 
between neighboring points; non-
parametric method

Land type classification, 
population density analysis

Artificial Neural 
Networks (ANN)

Performs prediction and classification on 
complex datasets; consists of layers and 
learns from data

Air pollution prediction, 
environmental change monitoring, 
disaster risk assessment

Deep Learning
Advanced analysis and prediction on 
large datasets, especially in image 
analysis

Satellite image analysis, forest fire 
detection, traffic density prediction

Semi-Supervised 
Learning

Learning process with limited labeled 
data, useful for data constraints

Spatial data classification, urban 
data analysis

Clustering 
(K-Means)

Groups data into meaningful clusters by 
assigning each data point to the nearest 
cluster

Population density, natural resource 
distribution, land use analysis
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Machine learning methods offer great advantages in terms of speed and accuracy in GIS 
analyses. These methods, which automate processes such as classification, prediction, 
and pattern recognition, especially on large datasets, provide valuable information in 
environments with complex and dynamic data. The table above summarises the main 
machine learning techniques commonly used for GIS and their application areas (Table 
3).
Support Vector Machines (SVM) is a powerful method in classification and regression 
analyses and can find the most appropriate hyperplane to classify data into classes. This 
method provides effective results in land classification and natural disaster risk analyses 
(Yousefi et al., 2020). Decision Trees branch and classify data by applying certain 
decision rules at each node; they are widely used in environmental risk analyses and 
water resource assessment (Rodríguez et al., 2021; Sánchez-Ortiz et al., 2021). Random 
Forests provides a model that improves accuracy by combining multiple decision 
trees and is successful in land cover classification, deforestation analysis, and urban 
development analysis. K-nearest neighbor (KNN) classifies according to the similarity 
of neighboring points; it is especially preferred in land type classification and population 
density analysis (Ge et al., 2020). Artificial Neural Networks (ANN) perform prediction 
and classification on complex datasets and are widely used in areas such as air pollution 
prediction, environmental change monitoring, and disaster risk assessment. Deep 
Learning, on the other hand, has the capacity to perform advanced analyses on large 
datasets and plays an important role in satellite image analysis, forest fire detection, and 
traffic density prediction (Adegun et al., 2023). While Assisted Learning is used in areas 
such as data classification and urban data analysis by working with under-labeled data, 
Clustering (K-Means) groups data into meaningful clusters and is a preferred technique 
for population density, natural resource distribution, and land use analysis.

GIS offers a wide range of analyses and predictions by using both geostatistics and 
machine learning techniques in spatial data analysis. Geostatistics provides an important 
tool in addressing environmental and social issues by modeling spatial relationships 
between data. Machine learning, on the other hand, brings flexibility to GIS by 
extracting meaning from large data sets and automatic learning processes. When these 
two methods come together, versatile analysis opportunities are provided for users to 
make more accurate and reliable decisions. The impact of GIS is expanding in many 
areas from urban planning to natural resource management and disaster monitoring. 
Faster processing of data and detailed analyses create a strong infrastructure for early 
detection and management of environmental problems. Thus, complex spatial data gain 
meaning and strategic decision-making processes are based on more solid ground. These 
techniques, which increase the power of GIS, also contribute to the creation of more 
sustainable and smart cities in the future.

Remote Sensing and Deep Learning for Spatial Data
Remote sensing and deep learning are two powerful analysis tools that are becoming 
increasingly critical in modern Geographic Information Systems (GIS). With the 
development of technology, huge datasets can be collected to help us understand and 
observe our environment. Remote sensing provides high-resolution data from large 
areas with techniques such as satellite imagery, LiDAR, and thermal imaging, and is 
used in a wide range of fields from tracking environmental events to urban planning. 
Deep learning methods come into play in the analysis of these data; they can quickly and 
accurately perform operations such as extracting meaningful information from large data 
sets, pattern recognition, classification, and prediction. While remote sensing techniques 
increase the effectiveness of GIS projects by continuously collecting data from the 
environment, deep learning algorithms enable more advanced analyses by making use 
of these data (Zhang et al., 2022). The combination of the two approaches provides great 
benefits in a wide range of applications such as environmental monitoring, planning of 
urban areas, and natural disaster management.
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Remote sensing techniques provide a wide data source in the process of collecting 
environmental and spatial data. The main advantage of these techniques is the ability to 
analyze different features by collecting information from large geographical areas. Satellite 
imagery allows continuous observation of large areas, while aerial photography allows 
more detailed data to be collected. LiDAR technology is used to create high-resolution 
3D maps of the land surface using laser beams. Multispectral and hyperspectral imaging 
techniques allow the identification of features such as vegetation, water resources, and 
mineral distribution in a given area (Buckley et al., 2013). Thermal imaging is used in 
analyses such as the urban heat island effect by monitoring temperature changes, while 
radar remote sensing offers the advantage of obtaining images regardless of weather 
conditions. The following table summarises the remote sensing techniques commonly 
used in GIS applications and their application areas (Table 4).

Table 4
Remote Sensing Techniques in GIS

Technique Description GIS Applications

Satellite Imagery High-resolution images captured from 
satellites for various spatial analyses

Land use classification, urban 
growth analysis, environmental 
monitoring

Aerial Photography Images taken from aircraft to capture 
detailed spatial data

Topographic mapping, disaster 
assessment, infrastructure 
planning

LiDAR (Light 
Detection and 
Ranging)

Uses laser pulses to measure distances 
and create high-resolution 3D maps of 
the Earth’s surface

Terrain modeling, forestry 
analysis, flood risk assessment

Multispectral 
Imaging

Captures images across multiple 
wavelengths to identify material 
characteristics

Vegetation analysis, water body 
detection, mineral exploration

Thermal Imaging
Uses infrared sensors to detect 
temperature variations in the 
environment

Urban heat island analysis, 
forest fire detection, industrial 
monitoring

Radar Remote 
Sensing

Uses radar waves to capture images, 
allowing for analysis regardless of 
weather conditions

Land deformation monitoring, 
soil moisture analysis, 
oceanographic studies

Hyperspectral 
Imaging

Captures a broad spectrum of light to 
distinguish materials based on their 
spectral signatures

Agricultural assessment, mineral 
identification, environmental 
monitoring

Satellite imagery makes it possible to monitor large areas quickly and with high 
resolution. Satellite images, which are preferred for land use classification and urban 
growth analyses, are also important for environmental monitoring studies. Aerial 
photography allows obtaining more detailed spatial data and is used in studies that require 
detailed analysis such as disaster assessment and infrastructure planning. LiDAR maps 
the land surface in high resolution with laser pulses. This technique is very effective 
in forest analyses, terrain modeling, and flood risk assessment. Multispectral imaging 
enables versatile analyses such as vegetation analysis, detection of water resources, and 
mineral exploration. Thermal imaging analyses environmental problems such as the heat 
island effect in urban areas and the detection of forest fires by measuring temperature 
changes. Radar remote sensing collects data regardless of weather conditions and finds 
applications in different fields such as land deformation monitoring and ocean research. 
Hyperspectral imaging offers the advantage of separating materials according to their 
spectral signatures in studies such as agricultural evaluation and mineral detection 
(Shukla & Kot, 2016).
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Deep learning techniques play an important role in the process of analyzing and learning 
large data sets. It provides fast and accurate results by automating complex processes 
such as pattern recognition, classification, and prediction, especially in GIS data. Deep 
learning performs tasks such as detecting buildings, creating road maps, and classifying 
vegetation by performing detailed analyses on satellite and aerial images. In the table 
below, the main deep learning techniques used in GIS applications and the usage areas 
of these techniques are given (Table 5).

Table 5
Deep Learning Techniques in GIS

Technique Description GIS Applications

Convolutional Neural 
Networks (CNN)

Deep learning techniques specialized 
in image analysis and feature 
extraction

Land cover classification, urban 
structure detection, deforestation 
monitoring

Recurrent Neural 
Networks (RNN)

Processes sequential data, useful for 
time series spatial data analysis

Weather prediction, traffic 
flow analysis, temporal change 
detection

Generative 
Adversarial 
Networks (GAN)

Used for generating synthetic data and 
enhancing image quality

Satellite image enhancement, 
filling missing data, land use 
simulation

Autoencoders
Unsupervised learning method used 
for dimensionality reduction and 
feature extraction

Noise reduction in remote 
sensing data, anomaly detection 
in spatial datasets

Transfer Learning
Leveraging pre-trained models for 
similar tasks to reduce training time 
and improve accuracy

Rapid deployment for land 
cover classification, disaster 
assessment

Semantic 
Segmentation

Pixel-level image classification for 
detailed object detection

Building and road detection, 
vegetation mapping, land use 
analysis

Object Detection Identifies specific objects within an 
image, used for counting and tracking

Tree counting, vehicle detection, 
wildlife monitoring

Convolutional Neural Networks (CNN) perform particularly well in image analysis 
and are used in areas such as land cover classification and urban structure detection. 
Recurrent Neural Networks (RNN) are a suitable technique for analyzing time series data 
and are preferred in weather forecasting or traffic flow analyses. Generative Adversarial 
Networks (GAN) are used to improve image quality and generate synthetic data. It is 
an ideal technique for processes such as satellite image enhancement and missing data 
filling (Zaytar & El Amrani, 2021). Autoencoders are used as an unsupervised learning 
method to reduce the dimensionality of data and feature extraction; it is useful for noise 
reduction in remote sensing data and anomaly detection in spatial data sets. Transfer 
learning reduces training time and improves accuracy by using pre-trained models on 
similar tasks, enabling rapid land cover classification and disaster assessment (Alem & 
Kumar, 2022). Semantic segmentation provides detailed object detection by classifying 
each pixel in the image and is used in detailed analyses such as building and road 
detection. Object detection, on the other hand, identifies specific objects in the image 
and is useful in counting and tracking operations; it is especially effective in tasks such 
as tree counting, vehicle detection, and wildlife monitoring.

In general terms, the combination of remote sensing and deep learning techniques 
provides in-depth analyses and fast solutions in GIS projects. These methods support 
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decision-making in critical areas such as environmental monitoring, urban planning, 
and disaster management by making sense of big data sources. With the developing 
technology, the efficiency and accuracy provided by these techniques contribute to the 
creation of more sustainable and smart cities. While remote sensing enables the collection 
of spatial data covering a wide area, deep learning enables making predictions for the 
future by making sense of these data. In this direction, the combination of these two 
methods in GIS applications has the potential to enable better management of modern 
cities and environmental systems.

Spatial Data Visualization and Interpretation
Spatial data visualization and interpretation is an important component of data analysis 
in Geographic Information Systems (GIS). Visualization of spatial data supports users’ 
decision-making processes by facilitating the understanding of complex geographic 
information. Visualization enables faster and more effective interpretation of data 
by representing multidimensional data with graphs, maps, and various visual tools. 
This contributes to the understanding of not only location-based information but also 
patterns, relationships, and variability in the analysis of spatial data. In this context, data 
visualization in GIS has a wide range of applications from urban planning to natural 
resource management, from environmental monitoring to crisis and disaster management 
(Nasr-Azadani et al., 2023).

Data visualization tools and libraries enable GIS analysts to present spatial data in 
dynamic and interactive formats. For example, ArcGIS and QGIS are powerful GIS 
software widely used for spatial analysis and visualization. These platforms help urban 
planners analyze infrastructure development projects, environmental scientists monitor 
ecosystem changes, and public institutions to plan post-disaster recovery processes 
(Pavelka & Landa, 2024). The detailed analysis and mapping tools provided by ArcGIS 
allow users to view and analyze data in layers. For example, ArcGIS is often preferred 
for identifying natural disaster risk zones or monitoring urban expansion. QGIS, on 
the other hand, is a popular choice especially for research and academic studies due 
to its open-source nature and provides flexibility in spatial data analysis and mapping 
processes. 

Table 6
Tools and Libraries for Spatial Data Visualization and Interpretation

Tool/ Library Description Areas of Use

ArcGIS An advanced GIS platform for spatial 
analysis and data visualization

Mapping, geographic analysis, 
data visualization

QGIS An open source GIS software; offers spatial 
data management and analysis capabilities

Map creation, data integration, 
analysis

Tableau
Data visualization and analysis platform; 
supports visualization of spatial data Spatial data analysis, map-based 

data visualization

D3.js
JavaScript library for creating web-based 
data visualizations

Dynamic map visualizations, 
interactive data visualization

Leaflet A lightweight JavaScript library for creating 
web-based interactive maps

Web mapping, interactive map 
creation

Mapbox
A web-based mapping platform with 
extensive map editing and visualization 
capabilities

Map creation, geographic data 
visualization, location-based 
analysis
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Google Earth 
Engine

A cloud-based platform for analysis and 
visualization on large spatial datasets

Satellite imagery analysis, 
environmental change 
monitoring, spatial analysis

Matplotlib 
(Python)

PA Python-based data visualization library; 
can visualize GIS data in 2D

Graph drawing, data analysis, 
basic map visualization

GeoPandas 
(Python)

Python-based library for analyzing and 
visualizing geographic data

Geographic data processing, 
map analysis, spatial data 
visualization

Kepler.gl A powerful tool for interactively visualizing 
large data sets

Geographic data visualization, 
urban planning, logistics analysis

Tableau, another important tool for data visualization, allows visualizing various data 
types, including spatial data. Tableau helps users explore spatial relationships within 
data by creating interactive maps. For example, spatial analyses of different data, such 
as population density, traffic flow, or health data, can be quickly and clearly visualized 
using Tableau (Taylor et al., 2021). These visualizations enable decision-makers 
to promptly understand the data and make strategic decisions with the visualized 
information. JavaScript libraries such as D3.js and Leaflet, which are used for web-based 
data visualization, enable GIS data to be shared with wider audiences. While D3.js is 
used to create dynamic and customizable visualizations, Leaflet is ideal for developing 
interactive maps thanks to its lightweight structure and user-friendly interface. For 
example, a Leaflet can be used to visualize air pollution rates in a city, allowing users to 
see the pollution density on a map. Such web-based visualizations enable a wide range 
of users to access spatial analyses and present data more effectively (Table 6).

Figure 2
Mapbox Usage Example

Platforms such as Mapbox offer flexibility in spatial data visualization, enabling the 
creation of high-resolution maps and the addition of customized data layers. For example, 
a logistics company can use Mapbox to visualize delivery routes (Figure 2) and reduce 
costs through route optimization.
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Cloud-based solutions such as Google Earth Engine are used to analyze large 
spatial datasets. Google Earth Engine, which allows analyses of satellite images and 
environmental data, is particularly effective in monitoring and analyzing environmental 
changes. For example, a researcher who wants to analyse the deforestation process 
in Amazon forests can observe long-term changes by using the data sets provided 
by Google Earth Engine. In the Python ecosystem, libraries such as Matplotlib and 
GeoPandas are frequently preferred tools by data scientists and GIS experts for data 
analysis (Fleischmann et al., 2022). Matplotlib offers the user flexibility in creating 2D 
graphics and maps and is an ideal tool for simple maps. GeoPandas, on the other hand, 
is a powerful library for processing and visualizing geographic data and has a wide 
range of applications, especially in spatial data analysis. For example, an analyst who 
wants to examine the distribution of green space in a city can easily map different types 
of green space and their spatial relationships with GeoPandas. In addition, Kepler.gl, 
which is used for big data visualization, stands out as a powerful tool for presenting 
geographic data in an interactive and dynamic way (Zuo et al., 2022). Kepler.gl helps 
urban planners to analyze traffic density or logistics distribution networks. For example, 
an administrator who wants to monitor the traffic flow in a city can use Kepler.gl to 
visualize heavy traffic zones and make strategic decisions for necessary adjustments.

These tools and libraries enable spatial data to be presented in a more understandable 
and effective way. Visualization in GIS projects contributes directly to decision-making 
processes by making analysis results accessible and interpretable by a wider range of 
users. Visualization techniques allow the simplification of complex data structures and 
facilitate a better understanding of spatial patterns. The visual richness provided by these 
tools contributes to the more effective use of spatial analyses in a wide range of fields 
from academic research to industrial applications.

Challenges and Future Trends in Data-Driven GIS
Data-driven Geographic Information Systems (GIS) have become an important tool for 
collecting, analyzing, and interpreting spatial data, empowered by technologies such 
as big data analytics, artificial intelligence, and IoT. However, the development and 
implementation of data-driven GIS solutions involve many challenges. Various factors 
ranging from data quality to computational costs can affect the use and accuracy of 
these systems. At the same time, the predicted trends for the future development of 
GIS promise the emergence of smarter and more powerful systems. In this context, it is 
important to conduct a review of the challenges and future trends facing data-driven GIS 
solutions.

Challenges in Data-Driven GIS
Data-driven GIS requires a robust infrastructure to process and analyze large amounts of 
spatial data. However, the increase in the amount of this data and the increasing complexity 
of the data pose some significant challenges to GIS solutions. These challenges include 
data quality and accuracy, data integration and harmonization, data security and privacy, 
high computational costs, and data processing infrastructure.

Data Quality and Accuracy: The accuracy of data in GIS solutions directly affects 
the reliability of the results obtained. Data from different sources may sometimes 
be inconsistent or outdated. For example, incompatibilities between different data 
sources, such as satellite imagery or sensor data, can cause deterioration in data quality. 
Furthermore, some data may be incomplete or inaccurate, which can compromise the 
accuracy of GIS analyses. Therefore, it is important to develop automated error detection 
and data cleaning processes to improve data quality.

Data Integration and Harmonisation: In data-driven GIS solutions, integrating and 
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harmonizing data from different sources poses a major challenge. Various data types 
such as satellite images, GPS data, social media data, and sensor data from IoT devices 
need to be analyzed together. However, collecting these data in different formats and 
at different time intervals complicates the integration process. This situation requires 
harmonization of data in order to make accurate analyses in GIS solutions.

Data Security and Privacy: GIS projects are responsible for protecting data security 
and privacy, especially in studies involving large amounts of user data. Data containing 
location information of users, such as GPS data, raises privacy issues. Especially by 
combining data collected from security cameras in cities and social media platforms, 
there may be the potential to interfere with the private lives of individuals. Therefore, 
advanced encryption methods and data anonymization techniques should be used to 
ensure data security and privacy.

High Computational Costs: One of the most important challenges of data-driven GIS 
solutions is that big data processing requires high computational power and cost. 
Especially processing and analyzing large volumes of spatial data in real-time requires 
powerful hardware and advanced software. This increases the cost of GIS projects 
and makes it difficult for smaller-scale projects to access these technologies. While 
cloud computing solutions have the potential to reduce some of these high costs, cloud 
computing costs may also increase in the long term.

Data Processing Infrastructure and Performance: The data processing infrastructure 
required for GIS projects varies depending on the size of the data and the depth of 
the analysis. Especially in spatial analyses in big cities or time-critical projects such as 
monitoring natural disasters, fast and efficient data processing infrastructure is required. 
If a high-performance computing infrastructure is not established or is inadequate, 
data processing time may be prolonged and the accuracy of analyses may be adversely 
affected. Therefore, it is very important to use powerful and scalable data processing 
infrastructures in GIS projects.

Future Trends in Data-Driven GIS
The future of data-driven GIS has great potential with developing technologies. 
Innovations in areas such as artificial intelligence, machine learning, IoT, and cloud 
computing are making GIS solutions smarter, faster, and more effective. Future trends 
in data-driven GIS include smart city solutions, augmented reality (AR)-based mapping, 
real-time data analytics, more powerful AI-powered models, and cloud-based GIS 
solutions.

Smart City Solutions: Data-driven GIS solutions are critical for smart cities. Many 
aspects of city life such as traffic management, energy distribution, waste management, 
and security can be monitored and optimized with GIS. GIS solutions for smart cities 
contribute to making cities more sustainable and efficient. For example, thanks to real-
time data from sensors, traffic density can be analyzed and transport routes can be 
managed more efficiently.

Augmented Reality (AR) and GIS: Augmented reality technology, when combined with 
GIS, can offer more interactive mapping and data presentation. Augmented reality-
supported GIS solutions enable users to visualize environmental data more effectively. 
For example, it becomes possible to observe the status of infrastructure projects in a city 
or changes in natural disaster areas in real-time. This technology facilitates the use of 
GIS data in the field and provides users with a richer experience.

Real-Time Data Analytics: In the future, data-oriented GIS solutions are expected to 
become more effective with real-time data analytics. Thanks to IoT devices, satellite 
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systems, and sensor networks, real-time data can be collected continuously. These data 
can be quickly analyzed in GIS systems and provide instant information to decision-
makers. Especially in areas that require instant intervention such as natural disaster 
management, urban traffic control, and environmental monitoring, real-time data 
analytics provide a great advantage.

Artificial Intelligence Supported GIS Models: Artificial intelligence and machine learning 
allow for more in-depth analysis of GIS data. In the future, AI-supported GIS solutions 
will be more widely used in areas such as predicting environmental risks, monitoring 
urban development, and modeling the effects of natural disasters. These models support 
decision-making processes and increase the effectiveness of GIS by producing faster 
and more accurate results. GIS systems integrated with artificial intelligence make 
significant contributions to data-driven decision-making processes by performing better 
in big data analyses.

Cloud-Based GIS Solutions: Cloud computing plays an important role in the future 
of data-driven GIS solutions. In projects with intensive big data processing, cloud-
based GIS solutions facilitate data storage, processing, and analysis processes. Thanks 
to cloud technology, GIS projects can be supported with a cost-effective and flexible 
infrastructure. This enables small-scale businesses and local governments to access data-
driven GIS solutions at lower costs.

The future of data-driven GIS enables the emergence of more advanced, intelligent, 
and user-friendly systems with technological innovations. GIS solutions powered by 
new technologies such as artificial intelligence and machine learning play an important 
role in solving environmental and social problems. New approaches such as augmented 
reality, real-time data analytics, and cloud-based solutions expand the usage areas of GIS 
and make it applicable in more sectors. These developments contribute to the adoption 
of data-driven GIS solutions by more institutions and organizations.
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