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Introduction

 Optimization in engineering has become an essential tool for improving 
design efficiency and performance across various fields, leveraging advancements in 
computational power and algorithmic strategies (Bian & Priyadarshi, 2024; Kose & 
Kaya, 2018; Velasco et al., 2024; Ayaz & Kamisli Ozturk, 2021). Turbomachinery 
design optimization has evolved significantly in recent decades and is driven by these 
developments. The complex nature of turbomachinery flows, involving three-dimensional 
viscous effects, secondary flows, and multiple performance objectives, necessitates 
sophisticated optimization approaches. Traditional design methods, mainly relying on 
empirical correlations and engineering experience, are increasingly being supplemented 
or replaced by automated optimization techniques.

The evolution of optimization methods in turbomachinery design has progressed 
from simple gradient-based approaches to advanced machine-learning algorithms (Xu 
et al., 2024). This progression has been enabled by increased computational power and 
an improved understanding of complex flow physics. Modern optimization techniques 
can simultaneously handle multiple design variables and constraints while considering 
various performance metrics such as efficiency, pressure ratio, and structural integrity (Li 
& Zheng, 2017; Xu, 2024). Recent developments in artificial intelligence and machine 
learning have introduced new possibilities in turbomachinery optimization (Zou et al., 
2024). These methods offer potential advantages in handling high-dimensional design 
spaces and reducing computational costs through surrogate modeling. However, selecting 
and implementing appropriate optimization strategies remains challenging and requires 
careful consideration of problem-specific requirements.

This study presents a comprehensive analysis of advanced optimization 
techniques applied to turbomachinery design. The strengths and limitations of different 
optimization strategies, their practical implementation challenges, and emerging trends 
in the field are examined. The following sections explore various advanced optimization 
methods used in turbomachinery design, with a discussion of their principles, advantages, 
and applications. The third section provides an in-depth analysis of the strengths and 
weaknesses of these optimization techniques, followed by a detailed look at the practical 
challenges encountered in their implementation. The study concludes with insights into 
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future directions in optimization research, highlighting promising trends and areas for 
further exploration. 

Advanced Optimization Methods in Turbomachinery Design

The aerodynamic optimization of turbomachinery has evolved significantly, moving from 
traditional trial-and-error methods to advanced computational approaches that allow for 
the systematic and efficient exploration of complex design spaces (Lavimi et al., 2024). 
As illustrated in Figure 1, the modern turbomachinery optimization workflow begins 
with the parametric modeling of component geometry, where flexible design parameters 
are established. This is followed by performance evaluation through computational fluid 
dynamics (CFD) simulations or experimental testing, providing critical insights into 
how the design performs under various conditions. Insights from these steps feed into 
optimization algorithms, which generate the optimal design.  If necessary, iterations are 
performed to refine the design further, ensuring convergence to the best possible solution.

Recent advancements in optimization methods have significantly expanded 
the capabilities of turbomachinery design (Sagebaum et al., 2023). Techniques such as 
surrogate modeling, adjoint-based methods, and machine learning-driven approaches 
have transformed how engineers approach high-dimensional and nonlinear design 
challenges (LI et al., 2023; J. Luo et al., 2022). Surrogate models enable rapid design 
space exploration by approximating the results of computationally expensive high-
fidelity simulations, drastically reducing the time required for optimization. Adjoint 
methods, on the other hand, leverage gradient information with exceptional precision, 
allowing for the optimization of intricate geometries and flow characteristics with 
minimal computational cost. Meanwhile, machine learning and neural network-based 
approaches have introduced data-driven solutions that are particularly effective in 
handling large datasets and predicting performance metrics under complex and dynamic 
conditions (Zou et al., 2024).

The following sub-sections provide an in-depth examination of these advanced 
methods, highlighting their strengths and applications in turbomachinery design. Adjoint 
and gradient-based techniques are emphasized for their precision in high-dimensional 
optimization problems. Metaheuristics, such as genetic algorithms and particle swarm 
optimization, are noted for their flexibility in addressing nonlinear and multimodal 
objectives. Surrogate-based approaches offer computational efficiency, while neural 
networks and deep learning (introduce the scalability needed for modern aerodynamic 
challenges. Hybrid methods combine the benefits of these techniques, enabling robust 
and versatile solutions. Together, these methodologies represent a paradigm shift in 
turbomachinery optimization, allowing engineers to push the boundaries of performance 
and innovation.

Figure 1

Schematic representation of optimization methodology in turbomachinery design 
process
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Adjoint and Gradient-Based Optimization

In turbomachinery design, classical optimization methods have played a significant role; 
however, their limitations have prompted the exploration of more advanced techniques, 
as they often struggle with the complexity and high dimensionality of turbomachinery 
design problems. These methods can be computationally expensive and may become 
trapped in local optimal, failing to identify the global optimum (Kim et al., 2019; T. Liu 
et al., 2019). As a result, researchers have increasingly turned to gradient-based methods, 
particularly the adjoint method, which offers a more efficient means of calculating 
sensitivity functions and derivatives of objective functions independent of the number of 
design variables (Lavimi, 2023; Rubino et al., 2021; Walther & Nadarajah, 2015; L. Wu 
et al., 2021). One prominent development area involves using adjoint-based techniques 
for calculating gradients. These techniques enable designers to optimize blade shapes 
for multiple objectives, such as minimizing pressure losses, maximizing efficiency, and 
ensuring robust performance under varying operating conditions. 

In adjoint optimization, control points are defined around the shape, and their 
positions are modified within specified limits during optimization. As the shape changes, 
the flow around it must be recalculated. This requires completely re-meshing the domain 
or moving the existing mesh points from their initial positions. The first approach, re-
meshing, is more suitable for significant geometric changes but is computationally 
expensive. In contrast, the second approach, mesh deformation, is better suited for minor 
shape modifications and is less time-intensive. Regardless of the method used, it is crucial 
that the generated mesh ensures smooth variations in the objective function to minimize 
noise in the computed gradients (Schramm et al., 2018). Figure 2 shows the systematic 
process of adjoint-based shape optimization for turbomachinery applications. The 
flowchart in Figure 2(a) illustrates the iterative optimization procedure, beginning with 
an initial shape definition and control point placement, followed by shape deformation, 
flow simulation, and adjoint sensitivity computation until convergence is achieved. As 
a representative example, Figure 2(b) demonstrates how the geometry might evolve 
from a simple circular initial shape to the final optimized airfoil profile through strategic 
manipulation of control points. This example transformation illustrates the concept of 
shape evolution guided by the objective of minimizing the drag coefficient (Cd), with the 
intermediate updated shape representing a transitional stage in the optimization process.

Figure 2

(a) Flowchart of the adjoint-based shape optimization process (b) Representative 
example showing the progression of shape optimization from initial circular shape to 
optimized shape with the objective of minimizing drag coefficient (Cd)

A discrete adjoint framework has been shown to facilitate efficient aerodynamic 
optimization by leveraging adaptive polynomial chaos expansion to mitigate 
uncertainties in flow conditions, improving design robustness significantly (Zhang et al., 
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2023). Recent studies have emphasized the importance of incorporating unsteady flow 
dynamics into optimization frameworks, recognizing the inherent transient nature of 
turbomachinery operations. Adjoint methods combined with harmonic balance solvers 
have effectively addressed unsteady aerodynamic damping and vibration stability 
in compressor cascades, improving operational reliability (H. Huang & Ekici, 2014; 
Rubino et al., 2020). Similarly, fully turbulent adjoint approaches leveraging time-
domain methods have demonstrated accurate gradients for multirow configurations, 
enabling enhanced efficiency gains compared to traditional steady-state assumptions 
(Ntanakas et al., 2018). Unsteady optimization frameworks have also extended to 
multistage environments, showing remarkable capabilities in improving compressor 
performance by optimizing transient flow behavior (C. Ma et al., 2017). Another 
noteworthy development is incorporating robust optimization strategies to address flow 
conditions and design parameter uncertainties. Gradient-based methods assisted by 
surrogate models or adaptive response surfaces have proven effective in quantifying and 
mitigating the impact of such uncertainties. For example, surrogate-assisted gradient-
based optimization methods have been validated for improving aerodynamic robustness 
in transonic turbine blades, outperforming traditional deterministic approaches (J. Luo 
et al., 2022). Furthermore, advanced frameworks utilizing polynomial chaos expansions 
have enhanced the efficiency of robust aerodynamic design processes (Zhang et al., 
2023).

Advancements in geometry parameterization techniques have also complemented 
gradient-based methods by providing flexible and accurate representations of blade shapes. 
Methods based on Non-Uniform Rational B-Splines (NURBS) and shape derivatives 
have facilitated the seamless integration of parameterization into optimization workflows, 
ensuring smooth transitions between baseline and optimized geometries (Agromayor 
et al., 2021). Multi-objective optimization, aided by gradient-based Pareto front 
approximation, has enabled designers to balance conflicting objectives, such as efficiency 
and pressure loss, with reduced computational costs (Vasilopoulos et al., 2021). Recent 
studies highlight a clear trajectory toward integrating gradient-based optimization with 
high-fidelity modeling, robust uncertainty quantification, and advanced parameterization 
techniques. These developments underscore the transformative potential of gradient-
based approaches in achieving high-performance and resilient turbomachinery systems.

Surrogate-Based Optimization 
Surrogate-based optimization (SBO) is designed to tackle computationally expensive 
optimization problems by approximating the original high-fidelity model with a 
computationally efficient surrogate model (Koziel et al., 2011). The surrogate model acts 
as a proxy, reducing the computational burden while retaining reasonable accuracy. The 
working principle of SBO involves constructing surrogate models—such as polynomial 
regression, kriging, radial basis functions, or neural networks—based on a limited 
number of high-fidelity simulations. These models are then iteratively refined by adding 
new samples in areas of interest, balancing design space exploration with the exploitation 
of known high-performance regions (Queipo et al., 2005). Figure 3 illustrates the critical 
steps in a surrogate-based optimization process that utilizes CFD simulations. Kaya et al. 
(2021) employed a similar approach for the aerodynamic optimization of a wind turbine 
blade using CFD. 



84 Copyright © 2024 by ISRES Publishing

 
  Intelligent Systems and Optimization in Engineering

Figure 3
Flowchart of Surrogate-based Optimization based on CFD Simulations

SBO has found widespread applications in engineering that require complex 
simulations and high-dimensional optimization, especially in aerospace and 
turbomachinery design. Its effectiveness has been demonstrated in diverse disciplines, 
including aerodynamics, structures, and propulsion.

The effectiveness of surrogate models in turbomachinery optimization is 
underscored by their ability to facilitate rapid evaluations of design alternatives while 
maintaining accuracy in performance predictions. Zhao et al. (2024) developed a 
prescreening surrogate-model-assisted multi-objective differential evolution optimizer 
for highly loaded axial compressors, demonstrating notable improvements with efficiency 
increases and surge margin improvements. In addressing manufacturing uncertainties, 
Cheng et al. (2023) introduced a novel surrogate model combining self-organizing 
mapping and neural networks, improving efficiency and reducing performance variability.

The application of surrogate models spans various turbomachinery types and 
optimization challenges. Kim et al. (2010) demonstrated their effectiveness in centrifugal 
compressor impeller optimization using three-dimensional Reynolds-averaged Navier-
Stokes equations while Heo et al. (2016) applied these techniques to mixed-flow pump 
optimization. In the context of low-pressure turbines, Baert et al. (2020) tackled high-
dimensional design spaces with 350 parameters, achieving efficiency gains of 0.5 points 
through online surrogate-based optimization. Kong et al. (2021) further demonstrated the 
method’s versatility in low-pressure axial fan design, achieving efficiency improvements 
through kriging-based surrogate models.

Advanced applications have shown promise in complex design scenarios. Persico 
et al. (2019) developed a sophisticated approach for non-conventional turbomachinery, 
achieving a 50% reduction in cascade loss coefficient for supersonic turbine nozzles. 
Mondal et al. (2019) introduced a multi-fidelity global-local approach for transonic 
compressor optimization, effectively combining rapid low-fidelity evaluations with 
targeted high-fidelity simulations. Q. Wang et al. (2022) successfully applied surrogate-
based optimization to counter-rotating open rotors while Cao et al. (2022) implemented 
non-parametric surrogate models for low-pressure steam turbine exhaust systems.

The integration of surrogate models with advanced optimization algorithms 
has further enhanced their effectiveness. Song et al. (2014) demonstrated this by 
combining genetic algorithms with artificial neural networks for radial compressor 
optimization. Kozaket al. (2020) coupled high-fidelity flow modeling with a surrogate 
management framework for gas turbine optimization. These hybrid approaches have 
proven particularly effective in managing the trade-off between computational cost and 
design accuracy, enabling more efficient exploration of complex design spaces while 
maintaining solution quality.
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Metaheuristic-Based Optimization

Metaheuristic algorithms are widely employed in turbomachinery design to address 
the complexity and nonlinearity of design optimization problems. These algorithms 
handle multidimensional, multimodal, and highly constrained design spaces shared in 
turbomachinery applications. Unlike gradient-based methods, metaheuristics do not 
rely on derivatives, making them highly versatile for problems with discontinuities or 
non-smooth objective functions. This section reviews the applications, strengths, and 
advancements of metaheuristic techniques in turbomachinery design, along with insights 
from the literature.

Metaheuristic algorithms have been found to be extensively valuable for 
optimizing various components of turbomachinery, including blades, compressors, 
turbines, and casings. For example, optimizing radial flow turbines has demonstrated the 
efficacy of coupling metaheuristic algorithms with CFD simulations. Studies have shown 
that Grey Wolf Optimizer (GWO) outperforms other algorithms in achieving higher 
temperature drops by optimizing blade inlet angles and improving casing design for 
better pressure recovery (Mehrnia et al., 2020). Similarly, the aerodynamic performance 
of single-stage transonic axial compressors has been enhanced by hybrid algorithms like 
the combination of genetic algorithms (GA) and particle swarm optimization (PSO), 
which optimize parameters such as stall margin and peak efficiency (Dinh et al., 2024; 
Vuong & Kim, 2021).

Swarm-based algorithms such as artificial bee colony and PSO have proven 
effective in multi-disciplinary optimization frameworks. These methods, combined 
with high-order CFD solvers, have been employed for addressing aero-mechanical 
challenges, providing reliable and efficient designs under complex constraints (Ampellio 
et al., 2016). Furthermore, bio-inspired algorithms like Genetic Algorithms, Flower 
Pollination Algorithm, and Cuckoo Search have been utilized to optimize geometries for 
axial turbomachinery, highlighting their adaptability to diverse design conditions and 
constraints (Ait Chikh et al., 2018).

Metaheuristic algorithms offer several advantages in turbomachinery design. 
Their flexibility allows them to tackle multi-objective optimization problems, such 
as maximizing efficiency while minimizing pressure losses. Advanced variants, such 
as hierarchical dynamic switching PSO, introduce adaptive mechanisms that enhance 
convergence rates and global search capabilities, effectively preventing premature 
convergence (Yan et al., 2024). These improvements are particularly beneficial for 
complex optimization tasks like turbine blade profile design, where global optima are 
challenging to identify.

Another strength lies in their ability to incorporate surrogate models, which 
reduce computational costs without compromising accuracy. For instance, surrogate-
based optimization methods, combined with PSO, have been used to design dual-
bleeding recirculation channels in compressors, resulting in significant improvements 
in stall margin and operational stability (Vuong & Kim, 2021). This integration of 
metaheuristics with machine learning techniques, such as neural networks, has also 
enabled advancements in reliability prediction and dynamic modeling for turbomachinery 
systems (Bai et al., 2021).

Neural Networks

 Neural networks (NNs) have become an indispensable tool in engineering design 
and optimization, offering exceptional capabilities for performance prediction, design 
exploration, and uncertainty quantification (Ünler & Seyfi, 2022). Their ability to model 
complex, nonlinear relationships between design parameters and performance metrics 
has made them a cornerstone for surrogate modeling, optimization, and robust analysis. 
Various NN architectures have been developed to suit applications, including multilayer 
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perceptrons (MLPs), learning vector quantization, and radial basis function networks 
(RBFNNs). These networks are categorized based on data flow as feed-forward or 
recurrent and by learning approaches such as supervised training or self-organizing 
techniques. Figure 4 illustrates the general architecture of an RBFNN.
Figure 4
A General Architecture of a Radial Basis Function Neural Network (RBFNN)

One of the primary roles of NNs is as surrogate models for predicting performance 
metrics based on geometric or operational parameters. Ghorbanian and Gholamrezaei 
(2009) demonstrated this through an artificial neural network that effectively mapped 
the relationship between compressor design variables and aerodynamic performance. 
This work established the foundation for using NNs as predictive tools, reducing the 
dependency on full-scale simulations. Similarly, Barsi et al. (2021) employed NNs to 
optimize the design of a hydraulic propeller turbine, showing how these models can 
drive significant performance improvements through geometric modifications.

The integration of NNs with advanced optimization algorithms has further 
expanded their utility. For instance, Sakaguchi et al. (2016) combined NNs with genetic 
algorithms to enhance optimization efficiency by rapidly evaluating design alternatives. 
This hybrid approach leverages the speed of NNs for surrogate modeling and the 
global search capabilities of genetic algorithms, enabling faster convergence to optimal 
solutions. Another notable example is Du et al. (2022) applied series convolutional 
neural networks to optimize the end-wall profile of turbine stator blades. This method 
improved aerodynamic performance and required minimal training data, outperforming 
traditional surrogate models in accuracy and efficiency.

Neural networks are also pivotal in addressing uncertainties in turbomachinery 
operations, such as variations in operating conditions or material properties. Dual Graph 
Neural Networks (DGNNs) have been used for robust aerodynamic optimization, 
accurately predicting flow field behavior under multi-source uncertainties. Li et al. (2023) 
demonstrated that incorporating DGNNs into optimization frameworks led to designs 
that enhanced power output and efficiency while minimizing performance variability, 
ensuring robust performance across diverse operating scenarios.

Another significant NNs application is modeling fluid-structure interactions, 
such as blade flutter and aeroelastic stability. Graph Convolutional Neural Networks 
(GCNNs) have been employed to predict aerodynamic damping and stability margins 
with remarkable precision and speed. By replacing traditional high-cost simulation 
methods, GCNNs enable rapid analysis of aeroelastic phenomena, allowing for faster 
iteration during the design phase.



 
                    On the Advanced Optimization Techniques for the Aerodynamic Design of Turbomachinery

87Mehmet Numan KAYA, Bilal ERVURAL

In scenarios with limited access to high-fidelity data, Multi-Fidelity Graph 
Neural Networks (MFGNNs) have demonstrated exceptional capability by integrating 
low- and high-fidelity datasets (Li et al. (2023) and Liu et al. (2024) showed how 
MFGNNs achieve accurate predictions for flow field characteristics while minimizing 
computational costs. This approach bridges the gap between computational efficiency 
and predictive accuracy, making it a powerful tool for turbomachinery optimization.

Deep Learning Approaches

Deep learning (DL) has emerged as a transformative tool in turbomachinery optimization, 
demonstrating unparalleled capabilities in managing the intricacies of large datasets and 
highly nonlinear relationships inherent in complex aerodynamic and thermodynamic 
systems. Its ability to learn directly from data without requiring explicit physics-
based modeling makes it particularly well-suited for addressing challenges in modern 
turbomachinery design.

Recent studies underscore the diverse applications and advantages of deep 
learning across different aspects of turbomachinery. Shrivastava et al. (2022) employed 
deep learning models combined with nonlinear optimization techniques to dramatically 
reduce turbocharger rotor design cycle times—from days to hours—while preserving 
the accuracy of dynamic performance predictions. This represents a significant leap in 
accelerating the iterative design process, a key challenge in industrial applications.

For predictive modeling in aerodynamic systems, Fesquet et al. (2024) showcased 
the superior capabilities of U-net architectures over traditional surrogate models like 
POD-Kriging. By leveraging deep neural networks, their approach effectively predicted 
2D wake-flow fields and critical performance metrics for fan rotor blades, delivering 
both precision and computational efficiency. This advancement highlights how deep 
learning can address challenges in high-fidelity flow field simulations while reducing 
reliance on costly numerical computations.

Geometric deep learning has also gained traction as a specialized branch 
within DL applications for turbomachinery. Gouttiere et al. (2023) applied geometric 
convolutional neural networks to optimize the Rotor 37 test case, achieving a notable 
improvement in isentropic efficiency, verified through CFD validation. This study 
illustrates the power of continuous learning and geometry-aware models in tackling 
three-dimensional optimization challenges. Building on this foundation, Du et al. (2022) 
introduced dual convolutional neural networks for turbine blade profile optimization. 
The method achieved exceptional accuracy, with prediction errors below 0.5% for 99% 
of validation samples, and reduced computation times to a staggering 3 milliseconds per 
evaluation.

Transfer learning has proven highly effective when faced with limited training 
data—often a constraint in engineering domains. Deng et al. (2024) demonstrated this 
by employing deep transfer learning to optimize transonic rotor performance. By fine-
tuning pre-trained models, they improved tip-loading distribution, achieving significant 
aerodynamic gains without requiring extensive datasets. Such techniques hold promise 
for applications where data collection is constrained by cost or physical limitations.

In addition to design optimization, deep learning has shown its strength in 
operational efficiency enhancements. Huang et al. (2024) introduced a data-driven 
multi-agent deep reinforcement learning framework for optimizing air compressors in 
industrial aerodynamic systems. By integrating historical operational data with advanced 
reinforcement learning principles, their approach addressed the challenges posed 
by cyclic production schedules and dynamic load profiles. The model outperformed 
conventional energy efficiency and operational cost strategies while ensuring system 
stability and security.
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Moreover, DL’s potential extends to monitoring and diagnostics. Cao et al. (2021) 
applied deep neural networks to predict gas path degradation in gas turbines. Their work 
demonstrated that DL models can extract meaningful patterns from complex datasets, 
enabling early detection of performance anomalies and informing proactive maintenance 
strategies.

Hybrid Methods

Hybrid optimization methods have gained attention in turbomachinery design due 
to their ability to combine the strengths of multiple approaches, such as surrogate 
modeling, advanced simulation techniques, and optimization algorithms. These methods 
effectively balance computational efficiency and design accuracy, which is critical in 
optimizing complex and computationally expensive systems like turbomachinery. By 
integrating data-driven techniques with physics-based models, hybrid methods enable 
faster convergence, improved performance predictions, and enhanced exploration of 
design spaces.

For instance, artificial neural networks (ANNs) are frequently hybridized with 
evolutionary algorithms to exploit the predictive accuracy of ANNs and the global 
search capabilities of evolutionary methods. ANNs excel in approximating nonlinear 
relationships within the design space, while evolutionary algorithms are adept at exploring 
diverse regions of the space to find global optima. Villar et al. (2018) demonstrated 
this synergy by employing feedforward neural networks and evolutionary algorithms to 
optimize the aerodynamic performance of counter-rotating open rotors.  Additionally, 
the work of Lavimi (2024) highlights the role of NNs alongside other surrogate models, 
such as polynomial response surface methods and Kriging, in aerodynamic optimization 
tasks. Moreover, integrating NNs with advanced optimization algorithms has led to 
significant advancements in turbomachinery design. For example, Song et al. employed 
a multidisciplinary design optimization approach that combined NNs with a self-
adaptive multi-objective differential evolution algorithm to enhance the aerodynamic 
performance of a transonic turbine stage (Y. Wang et al., 2020). This synergy between 
NNs and optimization algorithms not only improves the accuracy of performance 
predictions but also accelerates the convergence of optimization processes.

Similarly, methods integrating surrogate models like Kriging with optimization 
techniques offer computationally efficient solutions for high-dimensional design 
problems. Bellary et al. (2016) compared various Kriging variants, including ordinary, 
universal, and blind Kriging, in optimizing a centrifugal impeller. The study highlighted 
how hybridizing Kriging models with hybrid genetic algorithms provided both accuracy 
and computational efficiency, enabling significant performance improvements in 
impeller design. Blind Kriging, in particular, achieved the best results by effectively 
modeling the complex flow characteristics of the system, reducing recirculation, and 
increasing efficiency. Luo et al. (2017) utilized proper orthogonal decomposition-based 
hybrid models for flow reconstruction and aerodynamic optimization in turbomachinery 
blades. Integrating POD modes, derived via singular value decomposition, with nonlinear 
regression techniques and adaptive Latin hypercube sampling ensured precision and 
computational efficiency.

Combining manual and automatic differentiation (AD), hybrid differentiation 
techniques also exhibit significant advantages in sensitivity analysis and gradient-
based optimization. Wu et al. (2023) developed a hybrid adjoint solver by integrating 
AD with manually optimized code to reduce memory consumption and computational 
cost. Applied to NASA Stage 35 and Aachen turbines, the method efficiently optimized 
multi-row turbomachinery designs, highlighting its practical utility in large-scale, 
computationally intensive problems.

In addition to these examples, hybrid approaches that integrate radial basis 
function networks with dimensionality reduction techniques, such as principal component 
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analysis, further exemplify the potential of hybrid methods. Ma et al. (2010) employed 
such a combination to optimize centrifugal compressor impellers, demonstrating 
the adaptability and effectiveness of hybrid approaches in turbomachinery design 
optimization.

Strengths and Weaknesses of Optimization Techniques in Turbomachinery Design

Optimization techniques play an essential role in turbomachinery design by enabling 
engineers to address complex, high-dimensional challenges and achieve optimal 
performance. These methods facilitate the navigation of multimodal and nonlinear design 
spaces, accommodating diverse constraints and performance metrics. However, each 
technique has specific strengths and limitations that influence its suitability for different 
design problems. Factors such as computational cost, sensitivity to noise, and the ability 
to handle uncertainty often determine their effectiveness in real-world scenarios.

Table 1 provides a detailed summary of the primary optimization methods 
employed in this domain, outlining their advantages, limitations, and notable applications 
in the literature. Genetic algorithms, for example, are renowned for their global search 
capabilities, excelling in finding solutions for highly complex and multimodal problems. 
Neural networks, in contrast, offer unmatched speed and precision in surrogate modeling, 
rapidly predicting performance metrics based on geometric or operational parameters. 
Deep learning techniques further expand these capabilities by efficiently processing large 
datasets and handling intricate geometries. Hybrid methods combine these strengths, 
leveraging the complementary advantages of different techniques to tackle multifaceted 
optimization challenges.

Despite their utility, these methods face challenges such as scalability in high-
dimensional design spaces, overfitting in data-driven approaches, and computational 
intensity in gradient-free methods. Addressing these limitations often requires innovative 
integration of techniques, such as embedding physical constraints into machine learning 
models or employing multi-fidelity approaches to balance accuracy and computational 
cost. The analysis presented in this section provides a roadmap for selecting and tailoring 
optimization strategies to meet the demands of turbomachinery design.
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Table 1
Strengths and Weaknesses of Optimization Techniques in Turbomachinery Design

Optimization Method Key Strengths Key Weaknesses
Example study in 
Turbomachinery 
Design

Meta-
Heuristic 

Optimization

Genetic 
Algorithms 
(GA)

- Global search capability - Computationally expensive
- Sakaguchi et 
al. (2016) have 
combined GA 
with NNs for 
turbine design 
optimization

- Handles complex, multi-
modal problems

- Convergence to local optima 
possible without proper 
tuning

- Flexible with non-linear 
objectives

Neural 
Networks

Neural 
Networks (NNs)

- Fast surrogate modeling - Requires large datasets for 
training - Ghorbanian & 

Gholamrezaei 
(2009) have used 
NN for compressor 
performance 
prediction

- Captures non-linear 
relationships

- Sensitive to overfitting and 
hyperparameter choices

- Reduces simulation 
costs

Physics-
Informed 
Neural 
Networks 
(PINNs)

- Integrates physical laws - High computational cost for 
training

- Salz et al. 
(2023) have used 
PINNs for airfoil 
optimization

- Reduces reliance on 
data-driven methods - Complex implementation

- Improves prediction 
reliability

Deep 
Learning

Deep Learning 
(e.g., CNNs, 
DCNNs)

- Handles large datasets 
effectively

- Requires extensive 
computational resources - Du et al. (2022) 

have applied 
DCNNs for turbine 
blade profile 
optimization

- Adaptable to complex 
geometries

- Overfitting risks with 
limited data

- Predicts performance 
with high precision

Reinforcement 
Learning (e.g., 
DMA-DRL)

- Adapts to dynamic 
environments - Long training times - Huang et al. 

(2024) have 
used DMA-DRL 
for operational 
optimization of air 
compressors

- Excels in operational 
efficiency optimization

- Requires detailed reward 
function design

- Handles multi-agent 
scenarios

Hybrid 
Approaches

Hybrid 
Approach

- Combines strengths of 
different methods - Implementation complexity

- Villar et al. 
(2018) have 
applied NN and 
evolutionary 
algorithms for 
counter-rotating 
rotor optimization

- Balances exploration 
and exploitation

- Requires careful tuning of 
combined models

- Accelerates convergence

Adjoint 
Optimization

Adjoint 
Optimization

- Provides high sensitivity 
accuracy

- Limited to differentiable 
models

- Wu et al. (2023) 
have used an 
adjoint solver 
for multi-row 
turbomachinery 
design

- Efficient gradient-based 
optimization

- Can be computationally 
expensive for multi-row 
problems

Surrogate-
Based 

Methods

Surrogate-Based 
Optimization 
(SBO)

- Reduces computational 
costs

- Relies heavily on surrogate 
model accuracy - Shrivastava et al. 

(2022) have used 
surrogate models 
for turbocharger 
rotor design 
optimization

- Effective for expensive 
simulations

- Requires careful sampling 
design

- Provides interpretable 
models

Kriging 
(Ordinary, 
Blind, etc.)

- Accurate interpolation 
for small datasets

- Computationally expensive 
for high-dimensional 
problems

- Bellary et al. 
(2016) have 
compared 
Kriging variants 
for centrifugal 
impeller 
optimization

- Provides uncertainty 
quantification - Limited scalability
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Challenges and Future Directions

While significant advancements have been made in turbomachinery optimization, critical 
challenges persist that demand innovative solutions. Managing high-dimensional design 
spaces and capturing complex flow physics remain formidable tasks, often requiring a 
delicate balance between computational efficiency and solution accuracy. Additionally, 
robust design optimization under uncertainty—essential for ensuring reliable performance 
across varying operating conditions—is an area requiring further exploration. Validation 
of advanced optimization techniques through experimental studies is also critical for 
bridging the gap between theoretical advancements and practical implementation.

Recent developments in metaheuristic algorithms tailored for turbomachinery 
applications have begun addressing these challenges (Hakan Cetin & Zhu, 2023). For 
instance, neuroevolutionary strategies that integrate ant colony optimization with long 
short-term memory neural networks have shown promise in predictive maintenance, 
particularly for predicting turbine engine vibrations (ElSaid et al., 2018). Experimental 
validation has further bolstered the role of metaheuristics in design optimization. Studies 
on high-load axial flow compressors have demonstrated the effectiveness of multi-
objective PSO algorithms, achieving notable gains in peak efficiency and stall margin (S. 
Huang et al., 2024). Similarly, integrating metaheuristics with dynamic weight strategies, 
as exemplified by the SDWPSO-BPNN models, has significantly improved reliability 
predictions for turbochargers, outperforming conventional methods (Bai et al., 2021).

The future of turbomachinery optimization lies in hybrid methodologies that 
combine the strengths of metaheuristics, surrogate models, and machine learning. 
Physics-informed neural networks (PINNs), which embed domain-specific knowledge 
such as the Navier-Stokes equations, hold the potential to improve the accuracy and 
reliability of optimization outcomes. Transfer learning, enabling the reuse of pre-trained 
models with limited data, offers a promising avenue for reducing computational demands 
in scenarios with sparse high-fidelity datasets. Focusing on sequential decision-making, 
reinforcement learning presents a compelling solution for optimizing operational 
strategies and diagnostics in real-time. Moreover, experimental validation will continue 
to play a pivotal role in ensuring that advancements translate effectively into real-world 
performance, fostering the development of more reliable and efficient turbomachinery 
systems.

Conclusion

Advanced optimization techniques have revolutionized turbomachinery design, enabling 
engineers to navigate complex design spaces and achieve unprecedented performance. 
Gradient-based methods, metaheuristics, surrogate models, neural networks, deep 
learning, and hybrid approaches have each contributed to this progress. The key 
strengths of specific optimization methods include genetic algorithms excelling at global 
optimization for complex problems, neural networks rapidly predicting performance, 
deep learning effectively handling large datasets and complex geometries, and hybrid 
methods synergistically combining multiple techniques. However, challenges remain in 
computational efficiency, uncertainty quantification, and experimental validation. Future 
research should explore hybrid methods, physics-informed models, transfer learning, and 
reinforcement learning to push the boundaries of turbomachinery optimization further. 
By addressing these challenges and leveraging emerging techniques, engineers can 
design the next generation of highly efficient, reliable, and sustainable turbomachinery 
systems.
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