
115Sabri KOÇER, Özgür DÜNDAR

Texture analysis for Mobiles Phones in Data
Compression

Sabri KOÇER
Necmettin Erbakan University

Özgür DÜNDAR
Necmettin Erbakan University

To Cite This Chapter

Koçer, S., & Dündar, Ö. (2024). Texture analysis for Mobiles Phones in Data Compression. In S.
Koçer & Ö. Dündar (Eds.), Intelligent Systems and Optimization in Engineering (pp. 115-126).
ISRES Publishing.

Introduction
 Storing and transmitting information are frequently important issues for
businesses, states and different organizations. These organizations can handle additional
information by packaging it, which likewise reduces the expected space and cost for
storage. In the event that you record or send information as part of your responsibilities,
it can be valuable to be aware of compression capabilities and the advantages it can offer
you and your association (Kocer vd., 2022).

 Compression for mobile phones is the most important area because we take care
of almost all our needs over the phone. 2D, 3D images are used and in graphics 2D, 3D
images can be called textures with different compression methods than normal images.
Mostly all techniques are enhanced for human eyes brightness, not only the color in
texture compression for mobile phones.
 Nowadays when everything becomes computerized, the need for storage of huge
amount of data becomes more crucial. The problem is that even if the capacity of storage
increases the demand for extra storage will keep growing even twice (Jayasankar, 2021).
Therefore, in order to deal with possible storage problems some data compression methods
were introduced. The main thing to know before using some compression method is the
level of compression the one wants to apply which is divided into categories such as
Tuple level, Page level, Column Level, Block Level and Table Level compression. The
data compression started its beginning from the compression of messages in telegraphs
by Morse Code which was taken as origin for Huffman coding (Anuradha, D.,2016,
Said, A.2003, Moffat, A., 2019)

Data Compression Techniques
 Usually, compression methods based on data quality are classified as lossless and
lossy. However, a hybrid type of compression which is called near-lossless compression
exists in practice. Usually, Lossy compression methods are not used in traditional
database systems but only at the application level, since in database systems both data
integrity and accuracy are principal because when the data loss happens the database can’t

 Chapter 10

116 Copyright © 2024 by ISRES Publishing

 Intelligent Systems and Optimization in Engineering

deduce what has to be thrown away and what does not (Pavlo, 2024). Nevertheless, lossy
compression still can be applied in particular database-related contexts. In NearLossless
technique the difference between the original and decompressed data differ by no more
than a precise amount known as maximum absolute distortion (MAD) in Fig 1

Figure.1
Data Compression Techniques’ main Classification (Khalid A, 2006)

 Depending on what is needed to be compressed in database system, distinct
compression schemes can be applied (Sayood, K., 2017). As was stated in abstract part
of this review paper the main rule is to have some goals such as producing fixed-length
values which means to have the predetermined length of compressed output regardless
of the original size or complexity of the input data which is crucial for Storage Efficiency,
Simplified Data Access, Improved Query Performance in Fig 2. Another goal is to have a
lossless scheme which means that input data and output data have to correspond to each
other. In addition, another solution for improving query performance is decompressing
data until necessary during query execution to reduce I/O operations, optimize memory
and CPU usage (Salomon, D. 2007).

Figure 2
Data Compression Techniques (Jayasankar, 2021).

 Texture analysis for Mobiles Phones in Data Compression

117Sabri KOÇER, Özgür DÜNDAR

Levels of compression
As discussed before there are several compression levels in database systems.
Compression granularity refers to the size of data to be compressed in the database and
can vary depending on specific requirements (Jayasankar, 2021).
 Tuple or row level compression is compression which covers individual rows in
database. It is usually selected when there are rows that have repetitive terms. Besides
inconsiderable performance impact, another positive thing about it is the fact that when
the data is updated in row level it is much simpler than decompression and recompression
of higher-level data compression.

 Page level compression is held on the database pages the size of each is 2𝑛KB
usually 8KB. Pages are categorized into 3 types Data Pages, Index pages, Overflow
pages. When a table is created each row is stored in tables. Here the balance between
performance and effective storage usage is achieved. Since This level of compression
covers more data than tuple level it is easier to reduce redundancy (Severance, D. G.
1983).
 Block level compression is the technique when database management system
compresses the data before transferring to the disc and decompress when there is need to
read it. It stands for reducing I/O operations and saving space for more data to be stored
in physical space. Depending on different factors and DBMS capabilities, algorithms
such as LZ77, Huffman, RLE can be applied to blocks.
 Columnar level compression is another level of compression when the data is kept
in the form of columns. It is effective when columns have similar items and algorithms
such as RLE, dictionary Encoding are good for achieving great ratio of compression.
 Tablespace level compression is the most significant storage reduction method
which ameliorates performance, since tablespace contains all the tables, indexes and
other objects.
Huffman Coding
Huffman Coding is one of the essential techniques used in lossless compression methods
first introduced in 1952 (Moffat, A. 2019). Even so, its simplicity continues to make
it popular. primary concept involves allocating tables with codes according to each
character's frequency of appearance, which is determined by 𝑙𝑜𝑔 𝑝, where p is the
probability of occurrence, that’s why shorter codes represent most frequently appearing
character and are on the upper branch of the binary tree while longer codes identify less
frequently seen characters in Fig 3.
 In the creation of tree, the thing that should be considered is the fact that elements
with high frequency have to stand on the upper branches. And starting from the root
node which is the overall number of all occurrences of all elements in the original data,
left and right branches represent 0s and 1s and this process keep going until leaf node.
Eventually Huffman code map is built.

118 Copyright © 2024 by ISRES Publishing

 Intelligent Systems and Optimization in Engineering

Figure 3
Example Of Huffman Coding (Lavivienpost,2024)

 There are multiple variants of Huffman coding, including Minimum Variance
Huffman Code, Length-Limited Huffman Code, Non-Binary Huffman Code, Canonical
Huffman Code Adaptive Huffman Code and others. Many compression algorithms,
such as Deflate, JPEG, and MP3, utilize Huffman coding as their underlying technique
(Pigeon, S., 2003).
Run Length Encoding
One of the simplest forms of compression is Run Length Encoding (Fig 4) which was
found by Capon in 1959. It is used particularly in cases when the data brings significant
redundancy and repetitive, otherwise it can even increase the size of the compressed file.
In database systems it is applicable in columnar database where for instance column
identifying the gender of people and terms female and male repeat (Severance, D. G.
1983).

Figure 4
Run Length Encoding

Arithmetic Coding
Arithmetic coding, introduced by Langdon in 1984, is a notable technique and differs
from traditional coding methods since it represents an entire message as a single number
that is a fraction between 0 and 1 which allows compression rates to approach the
theoretical limits defined by the entropy of the input data in Fig 5. Despite its high
effectiveness, it is more challenging to implement than some other methods. Arithmetic
coding is especially advantageous over Huffman coding when handling sources with
small alphabets and imbalanced probability distributions. A key advantage of arithmetic

 Texture analysis for Mobiles Phones in Data Compression

119Sabri KOÇER, Özgür DÜNDAR

coding is its ability to separate the modeling and coding phases of the compression
process, providing greater flexibility and efficiency. Here with increasing the frequency
of symbol the bits encoded are decreasing. Arithmetic Coding is categorized in two types
– adaptive and binary (Said, A. 2023).

Figure 5
Arithmetic coding (Witten,1986)

Dictionary based coding
Dictionary based coding is used when we deal with long text or any other file format with
repetitive components inside it. This method uses a dictionary where most frequently
sequences of characters are kept. The stored sequences now have indexes and each time
when new character or sequence of characters which has to be encoded is the same as
the one in the dictionary encoder indexes them from dictionary in Fig 6. Otherwise,
when the character is not repetitive the character or sequence of characters is sent in
uncompressed form to dictionary. The dictionary exists in two forms-static which is built
before process of encoding and is left unchanged, meanwhile the dynamic dictionary
is adjustable can change in the process, leading to enhanced compression ratios. Also,
dictionaries’s scope can be chosen I block level, table level and multi table level or so-
called database level. One of the most renowned and effective methods for larger files
is Lempel–Ziv algorithm (LZ) is lossless compression method which replaces frequent
characters by indexes in the dictionary (Das, D, 2005).
 It has two versions developed in 1977 and 1978, first employs a sliding window
technique to look for matches within a specified range of past data from the current
position. It encodes sequences by referencing earlier occurrences within the window,
using (distance, length) pairs, occasionally including a literal character. For instance,
Open-source MySQL employs the LZ77 algorithm for compressing its InnoDB tables.

Figure 6
Example of Lempel Ziv Compression Method

 LZ78 on the other hand, uses a dictionary-based approach. Here characters or
ssequence of characters are appended to the dictionary dynamically and as an output
references to the built dictionary created. Lempel–Ziv-Welch (LZW) is the most recent
version which is used very often and developed by Terry Welch inspired by LZ77 and
LZ78 (Subathra, S.,2005).

120 Copyright © 2024 by ISRES Publishing

 Intelligent Systems and Optimization in Engineering

Brief History of Texture Compression for Mobile Phones
In image pixilation, the bandwidth of the system is what limits performance. (Aila vd.,
2003). One of the techniques that reduce bandwidth is texture compression. (Knittel
vd., 1996). One of the must-have features in the system for texture compression is that
textures can be stored compressed in the cache in order to make better use of the cache.
Second, a constant compression ratio is needed for simple addressing and random access.
Some losses occur due to fixed rate compression. Thirdly, texture-dependent lookup
tables (LUT, Look Up Table) are avoided, eliminating the update that the LUT needs.
(Hakura & Gupta, 1997).
 While initially texture compression was targeted at mobile phones, it was later used
in computer graphics cards and game consoles, using PACKMAN texture compression,
which offers low complexity and reasonable image quality. (Ström & Akenine-Möller,
2004) .
 With Block Truncation Coding (BTC), gray images were compressed into blocks of
4 × 4 pixels at a time. Two 8-bit grayscale values were stored for each block, and each
pixel in the block was indexed to one of these grayscales, resulting in 2 bits per pixel (2
bpp – bit per bit).(Delp & Mitchell, 1979). Although BTC is not a tissue compression
technique, the basis of other techniques is based on it.
 The method called Color Cell Compression (CCC) uses an 8-bit color palette as an
index instead of the grayscale value of BTC. The color palette is limited and requires
memory searching (Campbell vd., 1986). Later CCC was implemented in hardware and
was also used as texture cache (Knittel vd., 1996).
 An evolution of CCC and one of the most popular is the S3TC texture compression
method, which has been used in DirectX and has extensions for OpenGL. The block
size is 4×4 and compressed to 64 bits. The two primary colors are stored in 16 bits.
Additionally, it stores a two-bit index between two local base colors. All colors lie on a
single line in the RGB space. The compression rate is 4 bpp. One disadvantage of S3TC
is that only four colors can be used per block (Mccabe & Brothers, 1998) (Iourcha vd.,
2003).
 S3TC’s problem was solved by using colors in neighboring blocks, but this increased
the memory bandwidth (Ivanov & Kuzmin, 2000). The scheme, called POOMA, uses a
variation of S3TC but compresses the 3×2 block size to 32 bits. Another difference from
S3TC is that it uses fewer bits and only one intermediate color (Akenine-Moller vd.,
2003). With the method called vector quantization, textures can be compressed up to 1
bpp and 2 bpp, and additional memory is required for access to vector quantization. This
is not a very suitable solution for the high performance expected from computer graphics
(Beers vd., 1996).
 Later, a very different approach was taken. Two low-resolution images derived
from the original texture are stored. During the process of decompressing textures, the
textures are enlarged bidirectionally and a blend between the two is made to create the
final color of the textures. It has two modes: 4 bpp and 2 bpp. In the 4 bpp version, two
base colors are stored per 4x4 block. For bidirectional linear growth, 2x2 adjacent blocks
are needed. Once textures are caught, decompression should be fast (Fenney, 2003).
 In another method, mipmapping (the process of reducing large textures to increase
the visibility of distant objects) and texture compression are combined. Each 4×4
block was compressed in YUV space and box filtering technique was used. Bitrate is
approximately 4.6 bpp (Pereberin, 1999).
How Data Compression Works
3D computer graphics is whole with textures. This is a feature that increases the image
quality and detail of 3D objects. Textures contain not only color but also information
such as height and direction.

 Texture analysis for Mobiles Phones in Data Compression

121Sabri KOÇER, Özgür DÜNDAR

 Textures are two-dimensional images, and they are applied to 3D surfaces. Each
pixel in the images is called a texture element. Standard compression algorithms
(RLE, LZW, Deflate) and popular image formats (JPEG, PNG, TIFF) are not suitable
for textures. Access to tissue is done randomly, and this process occurs on the tissues
needed, not sequentially. Textures corresponding to pixels that are next to each other
do not mean textures that should be next to each other. Therefore, the performance of
graphics systems is highly dependent on texture access. Texture compression formats are
characterized by random access (Paltashev1 & Perminov2,2014).
Four compression techniques are applied for real-time applications.
Decoding Speed: Since textures are presented in a compressed format, decoding speed
is very important. The decoding algorithm should be simple so that the processor finds
each texture quickly and easily when it searches for it.
Random Access: Quick access to any texture is important because it is unknown how to
access the texture.
Compression Ratio and Visual Quality: Compression ratio and visual quality are
interrelated. Because as the texture is compressed, visual artificiality will increase.
Encoding Speed: Encoding speed is not very important as it uses textures before they are
stored (Beers vd., 1996).
Textures are compressed in two ways: lossy and lossless. Since lossy texture compression
techniques will cause errors in the texture, the result obtained will be an approximation
of the original. In this technique, processing is done according to the compression ratio,
and as the amount of compression increases, artifacts increase and quality decreases.
Lossless compression technique always returns a replica of the original (Strom &
Wennersten, 2011) & (Eskicioglu & Fisher, 1993).
 When textures are compressed at a fixed rate, they always give the same value bit
per pixel (bpp). This means that a texture with a size of N*N will always be compressed
to the same file size. Non-constant compression techniques have also been shown to be
slower in random access since there is no structure defined to access the texture data,
regardless of the content.

Texture Compression Techniques for Mobile Phones
ETC (Ericsson Texture Compression) Family
ETC format, a standard compression scheme for Android-based devices, was first
developed for use on mobile devices. PACKMAN is the first version (Ström & Akenine-
Möller, 2004) then ETC1(Ström & Akenine-Möller, 2005)/ETC2(Ström & Martin,
2007) versions are enhanced. Based on the fact that the human eye is more sensitive to
brightness than color, ETC has made texture compression based on this idea. Therefore,
only a basic color is stored in each subblock (ETC1/ETC2 consists of two subblocks)
with only the brightness information tied to a single integer value. In a sub-block, there
are only four different brightness offsets and, accordingly, only four different colors are
available.
PACKMAN
If the data path occupies the same number of bits as its width, interruptions in the data
path are avoided, which simplifies hardware implementation. Memory sizes and bus
widths of mobile devices are limited, so 2x4 sized blocks were designed and each block
was compressed to 32 bits and the compression rate was 4 bpp.
 Only one RGB color value is stored in a block. Four bits per R, G, B represent the
basic color for a total of twelve bits (also referred to as RGB444 since each has 4 bits).
The remaining 20 bits represent brightness. For each pixel, the base color is additionally

122 Copyright © 2024 by ISRES Publishing

 Intelligent Systems and Optimization in Engineering

modified by a constant taken from the four-input index table.
 The same constant is added to all color components. This requires a pixel index
of two bits per pixel to indicate which of the four values should be used. Coding can
be done by exhaustively searching all parameters for least mean square error. It takes
about a minute for a 64×64 texture on a 1.2GHz PC. A comprehensive search of other
parameters based on average color is much faster and only takes about 30 milliseconds
(Ström & Akenine-Möller, 2004).
ETC1 (iPACKMAN)
An image compressed with PACKMAN has significantly fewer luminance bands than
an image where all pixels are 12 bit. To improve this, instead of a single block as in
RGB444, two 2x4 sized blocks were used side by side, and 4x4 sized blocks in total
were used.

 The 4x4 ETC1 block is divided into two smaller blocks. Blocks can be stacked
vertically or horizontally. As a result, it can choose the basic color with greater freedom.
The RGB (R1 − R2, G1 − G2, B1 − B2) difference was made, and the color component
that displayed the greatest deviation was noted. RGB555, or a 5-bit field from each color,
was then made. This difference is represented by the black areas in the diagram below.
It goes without saying that some blocks cannot be encoded in this manner by difference.
In order to decide whether or not to use differential coding, a bit was added to the 4x4
block.

● Therefore, a difference bit coding is also used to indicate whether it is differential
or normal,

● Flip bit indicating whether portrait (flip bit=0) or landscape (flip bit=1) orientation
is used,

● 16 pieces 2-bit pixel indexes (one for each texture),

● two 3-bit table code words (one for each sub block) specifying which table to use

● two color code words used (independently or together) to encode the base color of
the first sub block and the base color of the second sub block (Ström & Akenine-
Möller, 2005).

ETC2
Although the diff blocks with RGB color differences increased the quality, since there
was a single base color in each block, there were many errors due to compression in
textures that were much more colorful. Therefore, these problems were tried to be
corrected with extra blocks in ETC2.
 In ETC1, when the sum of the base color and the offset exceeds the valid 5-bit range
[0, 31], the blocks are decoded using one of the new modes, as invalid combinations
occur in the differential block. Of the 64 bits, 1 bit is spent on the diff-bit and 8 bits are
spent on the R0 and dR1 values, giving 55 bits. However, it is possible to use the lowest
two bits of R0 and dR1 to encode additional information. There are 3 modes for this; T,
H, Planar mode. These modes are caused by the overflow of each color (R, G, B) (Ström
& Martin, 2007).
In T mode, two colors A and B are compressed in RGB444 format. The remaining 3 bits
encode the d value. Then the other colors are calculated as C0 = (A - (d, d, d)) and C1 =
(A + (d, d, d)). This mode is applied when the colors are on a single line in Fig 7.

Figure 7

 Texture analysis for Mobiles Phones in Data Compression

123Sabri KOÇER, Özgür DÜNDAR

T Blocks in ETC2 (Zeng, 2016)

 In H mode, unlike T3, C0, C1, C2, C3 colors are used. This mode is applied when
the colors are on two lines. But the capacity of the H block is one bit less than that of the
T block. Since A and B colors are symmetrical, they can be changed, and the problem is
solved in Fig 8.

Figure 8
H Blocks in ETC2 (Paltashev1 & Perminov2,2014)

In planar mode, C0, CH, CV colors are available and are compressed as RGB676. And
it is calculated according to the formula below (Ström & Martin, 2007);

PVRTC Family
The PVRTC (PowerVR Texture Compression) format is patented by Imagination
Technologies and is designed for the PowerVR family of graphics cores (Simon, 2003).
It is used on Apple mobile devices such as iPhones and iPads. There is almost no publicly
available information about the PVRTC technique.
 Based on PVRTC, a high-frequency and low-frequency signal are represented by
two low-resolution images, A and B, scaled down by a factor of 4 in both dimensions in
Fig 9. To decompress an image, images A and B are first amplified and then processed
with the M signal, which indicates the processing weight for each tissue (Simon, 2003).

124 Copyright © 2024 by ISRES Publishing

 Intelligent Systems and Optimization in Engineering

Figure 9
PVRTC technique (Paltashev1 & Perminov2,2014)

 The main idea has something in common with wavelet compression, where the
entire image is split into high-frequency and low-frequency signals. A low-frequency
signal is represented by two low-resolution images A and B, scaled down by a factor
of 4 in both dimensions. A high frequency signal is a modulation signal M with full
resolution but low precision. To decompress an entire image, images A and B must
first be amplified and then blended using the modulation signal M, which specifies the
blending weights per texture (Simon, 2003).
ASTC Family
ASTC (Adaptive Scalable Texture Compression) was jointly developed by ARM and
AMD and introduced in 2012 and is an open royalty-free format. ASTC format has a
fixed size 128-bit block. However, it has a 4x4 to 12x12 size structure for 2D textures
and a 3x3x3 to 6x6x6 size structure for 3D textures. ASTC is one of the most flexible
formats because it also supports LDR, HDR, 2D and 3D textures. ASTC is one of the
most flexible formats because it also supports LDR, HDR, 2D and 3D textures (Jorn,
2012).

Conclusion
Texture Compression has an important place both in computer graphics and in the use
of mobile devices. The mobile platform still has much weaker hardware than desktop
computers. Therefore, existing resources must be used in the most efficient way.
Computational power, memory size and memory bandwidth are some of the limited
resources. Texture compression is an optimization technique used to reduce the demand
on memory size.
 Most textures on the GPU use “block compression” formats to save sampling
bandwidth, memory usage, and for faster texture loads. The common theme between
them is that they are all lossy and have fixed compression ratio and memory bandwidth.

References
Aila, T., Miettinen, V., Nordlund, P., & Oy, B. (2003). Delay Streams for Graphics

Hardware.
Akenine-Moller, T., Strom, J., & Research, E. (2003). Graphics for the Masses: A

Hardware Rasterization Architecture for Mobile Phones.
Anuradha, D., & Bhuvaneswari, S. (2016). A detailed review on the prominent

compression methods used for reducing the data volume of big data. Annals of
Data Science, 3, 47-62.

Beers, A. C., Agrawala, M., & Chaddha, N. (1996). Rendering from compressed
textures. Proceedings of the 23rd Annual Conference on Computer Graphics and
Interactive Techniques, 373-378.

 Texture analysis for Mobiles Phones in Data Compression

125Sabri KOÇER, Özgür DÜNDAR

Campbell, G., DeFanti, T. A., Frederiksen, J., Joyce, S. A., Leske, A., Lindberg, J. A., &
Sandin, J. (1986). Two Bit/Pixel Full Color Encoding.

Das, D., Kumar, R., & Chakrabarti, P. P. (2005, January). Dictionary based code
compression for variable length instruction encodings. In 18th International
Conference on VLSI Design held jointly with 4th International Conference on
Embedded Systems Design (pp. 545-550).

Delp, E., & Mitchell, O. (1979). Image Compression Using Block Truncation Coding.
IEEE Transactions on Communications, 27(9), 1335-1342.

Eskicioglu, A., & Fisher, P. (1993, Ekim 19). A survey of quality measures for gray scale
image compression. 9th Computing in Aerospace Conference. 9th Computing in
Aerospace Conference, San Diego, CA, U.S.A. https://doi.org/10.2514/6.1993-
4514

Fenney, S. (2003). Texture Compression using Low-Frequency Signal Modulation.
Hakura, Z. S., & Gupta, A. (1997). The Design and Analysis of a Cache Architecture for

Texture Mapping.
Huffman Coding. (2024). Lavivienpost.com.
lavivienpost https://www.lavivienpost.com/wp-content/uploads/2021/12/huffman-

steps1.jpg.webp
Iourcha, K., Nayak, K., & Hong, Z. (2003). System and Method for Fixed-Rate Block-

based Image Compression with Inferred Pixels Value.
Ivanov, D., & Kuzmin, Ye. (2000). Color Distribution ‐ a New Approach to Texture

Compression.pdf. Computer Graphics Forum.
Jayasankar, U., Thirumal, V., & Ponnurangam, D. (2021). A survey on data compression

techniques: From the perspective of data quality, coding schemes, data type
and applications. Journal of King Saud University-Computer and Information
Sciences, 33(2), 119-140.

Jorn, N. (2012). Adaptive Scalable Texture Compression. Eurographics Association.
High Performance Graphics, pp. 105-114.

Kocer, S., Jama, B.S.A ., Er Y. , Dundar, B. (2022). Analysing Trends and Applications in
Data Compression Techniques, In S. Kocer, O. Dundar (Eds.), Current Studies in
Basic Sciences Engineering and Technology (pp. 114–128). ISRES Publishing.

Khalid A “Introduction to data compression”, Third edition-2006
Knittel, G., Schilling, A., Kugler, A., & Straßer, W. (1996). Hardware for superior texture

performance. Computers & Graphics, 20(4), 475-481.
Lavivienpost, https://www.lavivienpost.com/huffman-coding-and-decoding/,2024
Mccabe, D., & Brothers, J. (1998). DirectX 6 Texture Map Compression. Game

Developer Magazine 5, 42-46.
Moffat, A. (2019). Huffman coding. ACM Computing Surveys (CSUR), 52(4), 1-35.
Paltashev1, T., & Perminov2, I. (2014). Texture Compression Techniques. sv-journal.

org/2014-1/06/en/index.php?lang=en
Pavlo, A., (2024). Lecture# 03: Data Formats & Encoding II. https://15721.courses.

cs.cmu.edu/spring2023/slides/05-compression.pdf
Pereberin, A. V. (1999). Hierarchical Approach for Texture Compression.
Pigeon, S. (2003). Huffman coding. Lossless Compression Handbook, 79-100.
Said, A., & Sayood, K. (2003). Arithmetic coding (pp. 101-152). Academic Press, San

126 Copyright © 2024 by ISRES Publishing

 Intelligent Systems and Optimization in Engineering

Diego, CA.
Salomon, D. (2007). A concise introduction to data compression. Springer Science &

Business Media.
Sayood, K. (2017). Introduction to data compression. Morgan Kaufmann.
Severance, D. G. (1983). A practitioner’s guide to database compression tutorial.

Information Systems, 8(1), 51-62.
Simon, F. (2003). Texture compression using low-frequency signal modulation.

Eurographics Association. Graphics Hardware. pp. 84-91.
Strom, J., & Wennersten, P. (2011). Lossless compression of already compressed

textures. Proceedings of the ACM SIGGRAPH Symposium on High Performance
Graphics, 177-182. https://doi.org/10.1145/2018323.2018351

Ström, J., & Akenine-Möller, T. (2004). PACKMAN: Texture compression for mobile
phones. ACM SIGGRAPH 2004 Sketches on - SIGGRAPH ’04, 66.

Ström, J., & Akenine-Möller, T.(2005). iPACKMAN: High-quality, Low-complexity
Texture Compression for Mobile Phones. New York, NY, USA : ACM. Proceedings
of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware.
pp. 63-70.

Ström, J. & Martin, P. (2007). ETC2: Texture Compression Using Invalid Combinations.
Aire-la-Ville, Switzerland: Eurographics Association. Proceedings of the 22Nd
ACM SIGGRAPH/EUROGRAPHICS Symposium on Graphics Hardware. pp.
49-54.

Subathra, S., Sethuraman, M., & Babu, J. V. (2005, December). Performance analysis of
dictionary-based data compression algorithms for high speed networks. In 2005
Annual IEEE India Conference-Indicon (pp. 361-365). IEEE

Witten, I. H., Neal, R. M., & Cleary, J. G. (1987). Arithmetic coding for data
compression. Communications of the ACM, 30(6), 520-540.

Zeng, J., Fang, L., Pang, J., Li, H., & Wu, F. (2016). Subpixel image quality assessment
syncretizing local subpixel and global pixel features. IEEE Transactions on
Image Processing, 25(12), 5841-5856.

About the Authors
Sabri KOÇER, PhD, He graduated from the Electrical Engineering Department of Selcuk
University. He completed his graduate and his doctorate in Gazi University. Currently,
Necmettin Erbakan University, Faculty of Engineering, Computer Engineering is
working. Electronics, Computer, Telecommunication, Signal Processing and Biomedical
studies in the area.
E-mail: skocer@erbakan.edu.tr , ORCID: 0000-0002-4849-747X

Özgür DÜNDAR, PhD, works at Necmettin Erbakan University, Department of
Astronautical Engineering. He graduated from the Electrical and Electronics Engineering
Department of Selcuk University. He worked as an Automation Engineer for a while.
His master’s and doctorate degrees are from Selçuk University, Institute of Science and
Technology, Department of Electrical and Electronics Engineering. Special fields of
study are Automation, Robotic, Communication, Electromagnetic and Micro Strip Patch
Antenna designs.
E-mail: ozdundar@erbakan.edu.tr , ORCID: 0000-0002-4142-4446

Similarity Index
The similarity index obtained from the plagiarism software for this book chapter is 17%..

mailto:skocer@erbakan.edu.tr
https://orcid.org/orcid-search/search?searchQuery=0000-0002-4849-747X

mailto:ozdundar@erbakan.edu.tr
https://orcid.org/orcid-search/search?searchQuery=0000-0002-4142-4446

