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Introduction

In today’s rapidly evolving digital era, businesses across numerous sectors are increasingly 
turning to data-driven decision-making to enhance operational efficiency and achieve 
strategic objectives. At the core of this shift lies predictive modeling, a powerful analytical 
tool that leverages historical data to anticipate future outcomes. By employing machine 
learning algorithms and statistical techniques, predictive models continuously improve, 
providing organizations with unparalleled insights into consumer behavior, market trends, 
and operational risks. This paper examines the profound impact of predictive modeling 
across various industries, including healthcare, education, business, and technology. 
From AI-driven diagnostic tools to real- time gesture recognition systems and drones, 
predictive analytics is driving innovation in diverse fields. The study also discusses the 
evolution of predictive modeling, tracing its roots from traditional statistical methods to 
advanced machine learning techniques that form the foundation of future data science.

As emerging technologies like quantum computing, federated learning, and edge AI 
come into play, predictive modeling is poised to have an even greater impact. This paper 
offers a comprehensive overview of the current state of predictive modeling and its future 
potential, including an analysis of its applications and ethical considerations.

Figure 1
Predictive Modeling (original)
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The Development and Progression of Predictive Modeling

Predictive modeling began with traditional statistical approaches, which offered a 
foundation for identifying patterns in data and predicting future events. Early methods, 
such as regression analysis and decision trees, were effective for smaller, less complex 
datasets. However, as computational power grew and data collection methods advanced, 
the demand for more sophisticated models emerged, leading to significant breakthroughs 
in the field.
By the late 20th century, machine learning began to replace traditional rule-based systems 
with more flexible models. Algorithms like support vector machines, decision trees, 
and neural networks enhanced the accuracy and complexity of predictive modeling. 
These algorithms could learn from vast datasets and uncover intricate patterns that 
were previously undetectable. The combination of big data, improved computational 
power, and advanced algorithms helped predictive modeling become widely used across 
industries during the early 21st century.
In recent times, predictive modeling has integrated deep learning techniques, allowing 
models to autonomously enhance their performance. Deep learning architectures, 
including convolutional neural networks (CNNs) and recurrent neural networks (RNNs), 
have enabled predictive analytics to excel in tasks such as image recognition, natural 
language processing, and behavioral prediction.

Figure 2 
Machine Learning and Deep Learning (original)

Machine Learning and Deep Learning in Predictive Modeling

The widespread application of machine learning (ML) and deep learning (DL) has 
fundamentally reshaped the landscape of predictive modeling. Where traditional models 
faced challenges with smaller datasets, ML algorithms now allow for the sophisticated 
analysis of much larger and more complex datasets. The ability of ML to refine models 
and improve prediction accuracy has introduced significant advancements in predictive 
analytics.
Machine learning uses both supervised and unsupervised techniques to reveal hidden 
patterns within data, leading to more accurate forecasts. Foundational ML methods, such 
as regression, decision trees, and support vector machines, have proven successful on 
large-scale datasets (Ghosh, 2021). Brown and Smith (2018) highlight that advanced 
machine learning techniques have significantly improved prediction accuracy, especially 
for large and complex datasets. On the other hand, deep learning is especially useful for 
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tackling unstructured or highly intricate data.
Deep learning models are inspired by neural architectures akin to the human brain, using 
layers of neural networks to process complex datasets. These models excel in areas like 
image recognition, natural language processing, and time-series analysis. Convolutional 
neural networks (CNNs) are frequently employed for tasks involving image recognition, 
while recurrent neural networks (RNNs) are better suited for sequential data processing.

Figure 3 
Challenges and Opportunities (original

Data Sources for Predictive Modeling: Challenges and Opportunities

As predictive modeling advances, the diversity and complexity of data sources have 
significantly expanded. Traditionally, models relied on structured data from databases 
and historical records. However, with the advent of the Internet of Things (IoT), wireless 
sensing technologies, and social media, new dynamic data streams have emerged. While 
these sources present opportunities for deeper insights, they also introduce challenges 
related to data quality, consistency, and real-time processing.
The Internet of Things (IoT) has become a significant contributor to the vast amount 
of data available for predictive modeling. IoT-connected devices generate data that 
can predict everything from equipment malfunctions in industrial settings to consumer 
behaviors in smart homes.
However, IoT data often comes in unstructured or semi-structured forms, requiring 
advanced preprocessing to be used effectively.
Wireless sensing technologies, such as Channel State Information (CSI), add another 
dimension to predictive modeling. CSI data captures real-time wireless signals, which 
can be leveraged for human behavior detection systems, including gesture recognition. 
However, due to the large volume and variability of this data, sophisticated algorithms 
are needed to filter out noise and detect relevant patterns .
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Figure 4 
Human Gesture Recognition (original)

The Role of Neural Networks in Human Gesture Recognition

Neural networks have dramatically transformed human gesture recognition, providing 
powerful tools to interpret and predict human movements with remarkable accuracy. 
By leveraging deep learning architectures like CNNs and RNNs, gesture recognition 
systems can process and analyze real-time data to decode complex hand movements, 
body gestures, and facial expressions. These systems are applied in a variety of fields, 
ranging from human-computer interaction to advanced robotics and healthcare.

Figure 5 
Real-World Applications (original)

Real-World Applications: Predictive Modeling in Industry

Predictive modeling has reshaped various industries by streamlining processes and 
enhancing decision-making. By utilizing large datasets with advanced algorithms, 
industries such as finance, manufacturing, supply chain management, and aerospace have 
significantly improved their performance, reduced costs, and forecasted future trends 
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more accurately. The ability to offer actionable insights has made predictive modeling 
essential in today’s highly competitive market landscape.

One notable application is financial forecasting. Financial institutions utilize machine 
learning models to analyze historical data, market trends, and economic indicators to 
predict future market movements. These models allow businesses to mitigate risks by 
detecting early signs of economic downturns, stock price fluctuations, and potential credit 
defaults. Additionally, banks rely on predictive models to assess the creditworthiness of 
their customers, offering more personalized and accurate loan offerings.

In supply chain management, predictive modeling helps companies optimize their 
operations by forecasting demand, managing inventory, and identifying potential 
disruptions. For instance, predictive models can anticipate changes in product demand 
by analyzing historical sales data, seasonal patterns, and real-time market fluctuations, 
allowing businesses to adjust production schedules and resource allocation efficiently.

Predictive modeling is also invaluable in project management, where it is used to 
forecast project timelines, predict budget overruns, and estimate resource requirements. 
By examining historical project data, managers can anticipate potential risks and 
inefficiencies, leading to more precise resource planning and timely project completion. 
Predictive models are particularly useful in large- scale software development projects, 
where delays can be costly and client satisfaction is paramount.

Figure 6 
Real-World Applications2 (original)

In the aerospace industry, predictive modeling has become crucial for optimizing 
maintenance and improving safety protocols. Airlines rely on predictive maintenance 
models to forecast potential equipment failures, thereby minimizing costly downtime 
and ensuring passenger safety. By analyzing data from aircraft sensors and maintenance 
logs, these models predict when components are likely to fail, allowing preventive 
maintenance to be scheduled before an issue becomes critical.

Predictive modeling also plays a role in AI-powered drones. These systems use machine 
learning to predict flight paths, optimize navigation, and anticipate environmental 
conditions such as wind speed or obstacles. In sectors like agriculture, construction, and 
logistics, AI-powered drones equipped with predictive models survey large areas, monitor 
crop health, and deliver goods with precision. These drones can operate autonomously, 
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adapting to dynamic environments in real-time (Zhang et al., 2021).

Finally, predictive modeling has found a place in the racing drone industry, where real-
time data like speed, altitude, and trajectory are analyzed to optimize drone performance 
during races.

Predictive analytics helps identify potential risks or mechanical failures before they 
affect race outcomes, enhancing both performance and safety.

Figure 7 
Healthcare and Education (original)

Predictive Analytics in Healthcare and Education

Predictive analytics has revolutionized healthcare and education by improving how 
these sectors utilize data to make informed decisions, enhance outcomes, and streamline 
operations. In healthcare, predictive models are used to diagnose diseases, forecast patient 
outcomes, and create personalized treatment plans. In education, predictive analytics 
powers personalized learning platforms, helping educators identify student needs and 
forecast academic performance.

In healthcare, predictive analytics plays a key role in the early detection of diseases. 
By analyzing large datasets, including medical histories and imaging results, predictive 
models can identify patterns that signal the onset of diseases. For example, these models 
are increasingly being used to detect cancer at earlier stages by analyzing radiological 
images. Machine learning algorithms pick up on subtle changes in tissue that may not be 
visible to the naked eye, leading to earlier and more accurate diagnoses.

Additionally, predictive models can help anticipate outcomes for chronic conditions 
such as diabetes or heart disease. Data from wearable devices and real-time monitoring 
systems allow healthcare providers to intervene early, reducing hospitalizations. 
Predictive analytics also improves healthcare efficiency by predicting patient admissions 
and helping hospitals allocate resources better during peak periods .

In education, predictive analytics is transforming traditional models by providing 
personalized learning experiences. By analyzing student performance and engagement 
data, predictive models identify areas where students may need additional support, 
allowing teachers to tailor their approach. This personalized method improves learning 
outcomes. Predictive models also assist institutions in identifying at-risk students, 
enabling timely interventions to increase retention (Johnson & Johnston, 2019).
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Figure 8 
Real-Time Decision-Making (original)

Real-Time Decision-Making: Predictive Models in Action

One of the most valuable outcomes of advances in machine learning and AI is real-
time decision- making, made possible by predictive models. Real-time analytics enables 
industries to respond quickly to changing environments, thereby improving decision-
making efficiency and accuracy. In manufacturing, real-time object-counting systems 
powered by predictive models detect and track items on conveyor belts, ensuring precise 
counting and quality control. For example, in the food processing industry, predictive 
models count items such as oranges in real time, optimizing operations and reducing 
errors (Gonzalez & Peters, 2021). Similarly, in human gesture recognition, systems that 
integrate machine learning algorithms with computer vision allow users to control devices 
through hand or body movements. These systems are increasingly used in consumer 
electronics and healthcare for contactless interfaces. Real-time predictive models are also 
essential in healthcare for monitoring critical patients, allowing providers to intervene 
when necessary .

In autonomous systems, such as drones and self-driving cars, predictive models process 
real-time sensor data to navigate environments, avoid obstacles, and make quick 
decisions. This increases safety and operational efficiency, allowing drones to adjust to 
changing conditions such as weather or terrain (Zhang et al., 2020).

Figure 9 
Emerging Trends (original)
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The Future of Predictive Modeling: Emerging Trends

The future of predictive modeling is being driven by several important trends, including 
quantum computing, federated learning, and edge AI. These emerging technologies are 
enhancing the speed, precision, and scalability of predictive models, making them more 
effective and accessible for various industries.

Quantum computing holds significant potential to transform predictive modeling by 
processing enormous amounts of data at unprecedented speeds. In contrast to classical 
computers, which use binary bits, quantum systems rely on qubits, which can handle 
more complex calculations in less time. This improvement is especially advantageous for 
predictive analytics, where large data sets with numerous variables need to be processed 
efficiently. Quantum computing is expected to significantly advance machine learning 
algorithms, unlocking solutions to previously unsolvable challenges.

Federated learning is another innovative approach, addressing privacy issues by training 
models on decentralized data sources. This technique is particularly valuable in fields 
like healthcare and finance, where regulatory compliance and privacy are paramount. 
Federated learning allows predictive models to harness diverse data sets while 
safeguarding sensitive information.

Edge AI, which involves deploying predictive models directly on devices such as 
smartphones and sensors, eliminates the need for cloud-based processing. This minimizes 
latency and supports real- time decision-making, which is essential for applications such 
as self-driving vehicles. As edge computing technologies progress, predictive models will 
be able to process data locally, boosting the speed and efficiency of various operations .

Finally, Explainable AI (XAI) is gaining momentum as it addresses the issue of transparency 
in machine learning models. XAI aims to make models more understandable, providing 
insights into decision-making processes. This is crucial for industries like healthcare and 
finance, where transparency in decision-making builds trust and accountability (Miller, 
2019).

Figure 10 
Responsible AI(original)

Ethical Considerations and Responsible AI in Predictive Modeling

As predictive modeling becomes an essential part of decision-making across various 
industries, it raises critical ethical concerns like fairness, transparency, bias, and 
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accountability. While predictive models provide significant insights, they also present 
challenges, particularly in maintaining fairness.

One of the primary concerns is bias. Predictive models, when built on biased data, 
may inadvertently reinforce or even magnify existing inequalities, resulting in unfair 
outcomes. This issue has been particularly highlighted in algorithms used in areas such 
as criminal justice and recruitment, where minority groups may be disproportionately 
disadvantaged. To combat this, it is crucial to utilize fairness-aware algorithms and ensure 
the inclusion of diverse, representative datasets that accurately reflect the population 
being analyzed.

Transparency is another major issue, especially with complex machine learning models 
that often function as “black boxes,” making it difficult to interpret how decisions are 
made. Garcia and Lopez (2020) emphasize that addressing ethical challenges, such as 
transparency and bias, is crucial for building trust and ensuring fair outcomes in AI-
driven predictive analytics. In sensitive areas like healthcare, it’s vital for stakeholders 
to understand the rationale behind model decisions to foster trust. Explainable AI 
(XAI) provides a solution by clarifying how models arrive at their conclusions, thereby 
improving both accountability and trustworthiness.

Accountability is equally important as predictive models become embedded in the 
decision-making frameworks of organizations. Establishing proper oversight and audit 
mechanisms ensures that the ethical implications of these models are continuously 
evaluated. Regular assessments can help guarantee that predictive models remain fair 
and accurate.

Finally, privacy concerns become more pressing as predictive models increasingly rely on 
personal data. Federated learning offers a promising approach by allowing decentralized 
data processing, which helps safeguard privacy while still enabling robust predictive 
analysis.

Figure 12 
Ethical (original)

Conclusion

Predictive modeling has firmly established itself as a key tool in modern data science, 
empowering industries to make informed, data-driven decisions. Technological 
advancements in machine learning, deep learning, and artificial intelligence have 
brought transformative improvements across fields like healthcare, finance, education, 
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and manufacturing, enhancing operational efficiency, reducing risks, and optimizing 
decision-making processes.

The adoption of emerging technologies like quantum computing, federated learning, 
and edge AI will further boost the capabilities of predictive models, making them faster, 
more scalable, and more accurate. These advancements will enable predictive analytics 
to expand into new industries while addressing ethical issues like bias, transparency, and 
accountability.

To support the continued development of predictive modeling, it’s essential to prioritize 
responsible and ethical usage. Focusing on fairness, transparency, and accountability will 
allow organizations to maximize the advantages of predictive models while minimizing 
potential risks, ensuring that these tools benefit all stakeholders.
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Introduction

A social network is defined as a collection of social entities, such as individuals, 
groups, and organizations, connected by relational data with some interactions or 
relationships between them. Examples of such networks include friendship networks, 
follower networks, interaction networks, co-authorship networks, and spread networks 
(Tabassum et al., 2018). The two main components of any social network are entities 
and relationships (Scott, 2000). The combination of these two elements creates a social 
network. Entities may be individual people or collective actors, such as groups and 
organizations. Common examples of individual actors include students in a school, 
employees in a corporate firm, or members of a political organization. Collective actors 
could be companies, foundations, or political parties. Sometimes, networks consist 
of different types of entities, such as a healthcare system or an education system. A 
relationship is generally defined as a specific type of contact, connection, or bond 
between a pair of entities or a dyad (Wasserman & Faust, 2004). Relationships can be 
directed, where one actor initiates and the other receives (e.g., giving advice, selling), or 
undirected, where reciprocity occurs (e.g., chatting, collaborating). A relationship is not 
a characteristic of a single entity but is a common dyadic property that exists as long as 
both participants maintain it. The diverse relationships between individual and collective 
entities can represent network structures and explain their impacts. The specific type 
of relationship a researcher should measure depends on the research objectives. For 
example, a study on community networks will likely examine various neighborhood 
activities, whereas a study on banking networks will focus on financial transactions. 
Borgatti et al. (2009) classified the types of relationships in social networks. These 
classifications and examples related to them are presented in Table 1.

Table 1 
Types of Relationships

Relationship 
Type Example

Similarities Being on the same team, attending the same school, same gender, 
similar hobbies

Relationships Kinship, marriage, friendship

                                                                                                                                     Chapter 4
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Interactions Help, advice, recommendation

Flows Information flow, personnel changes, international trade

Social networks are suitable subjects for both quantitative and qualitative studies as they 
contain both the structure and the content of social relationships (Coviello, 2005). The 
analytical approach used in studying social networks is Social Network Analysis. Social 
Network Analysis (SNA) is a powerful analytical method aimed at examining connections 
and interactions between individuals, groups, institutions, or devices to make inferences 
from these relationships (Edwards, 2010). SNA finds application not only in personal 
relationships and social circles but also in business, healthcare, education, biology, 
and many other fields. This analytical method provides data scientists, researchers, 
and analysts with a broad and versatile toolkit, enabling the understanding of complex 
network structures and the extraction of information from them.

The rapidly growing subset of social networks is social media. Applications like 
Instagram, Twitter, LinkedIn, and WeChat facilitate daily information exchange. A 
significant concern is how the vast, complex data generated by online social network users 
can be searched, retrieved, stored, shared, processed, and visualized. SNA has become a 
widely applied method in research to investigate networks of relationships at individual, 
organizational, and societal levels. With the popularization of social networking sites 
like Facebook, Twitter, and Instagram, and the development of automated data collection 
techniques, the demand for SNA has recently increased significantly.

Social network analysis, with its interdisciplinary approach, is used in various fields 
and is of considerable importance. It offers the opportunity to analyze the relationships 
between social entities and the significance of these relationships (Oliveira & Gama, 
2012). It allows the identification of similarities and differences in relationships between 
entities within social networks (Somyürek & Güyer, 2020). It also enables the integration 
of relationships and attributes in data structures (DeJordy & Halgin, 2008). In social 
network analysis, the visual presentation of data allows the entire structure to be seen as 
a whole and provides insight into the dynamics and effectiveness of any network (Lewis, 
2011).

Historical Development of Social Network Analysis (SNA)

Social network analysis is a method that has evolved over time with the integration of 
various disciplines and has become an important tool in modern social sciences today. 
Social network analysis (SNA) has been used for a long time to represent complex 
relationships between participants in social systems at all scales. It is summarized the 
historical development process of SNA in five main stages (Somyürek & Güyer, 2020) 
(Figure 1).

Figure 1
Historical Development of SNA     
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Formal Sociology (1900-1930)

 ● George Simmel laid the theoretical foundation of modern social network analysis 
by focusing on the formal analysis of social interactions.

 ● Simmel examined different patterns of relationships, such as dyadic and triadic 
interactions, and argued that sociology should focus on the forms of social 
relationships.

Sociogram and Sociometry (1930-1940)

 ● Jacob Levy Moreno developed the techniques of sociogram and sociometry to 
study interpersonal relationships in small groups.

 ● Sociograms provided a visual dimension to network analysis by graphically 
representing social ties within groups.

Graph Theory and Development of Structural Features (1940-1960)

 ● Heider’s (1946) work on group dynamics and balance made significant 
contributions to SNA.

 ● Cartwright and Harary (1956) mathematically analyzed social relationships in 
terms of balance and group dynamics.

 ● Graph theory, with its structures of nodes and edges, enabled a better understanding 
of social relationships.

 ● Modeling positive and negative relationships allowed for the identification of 
structural features like density and clustering in social networks.

Equivalence and Block Modeling (1960-1980)

 ● Harrison White and his students defined social structures through roles and 
relationships.

 ● Granovetter (1983) demonstrated that weak ties could be more effective than 
strong ties, highlighting the functionality of social relationship networks.

 ● Block modeling was used to group structurally similar nodes and to determine 
the fundamental features of the network.

Social Network Analysis as an Independent Field (1980-Present)

 ● In the 1980s, SNA emerged as a distinct research field within social sciences.
 ● INSNA (International Network for Social Network Analysis) was established, 

the Sunbelt Conference was organized, and the journal Social Networks began 
publication.

SNA has since taken a more analytical approach, developing its methodologies, 
theoretical expressions, and software. Software like UCINET, Gephi, PAJEK, and R 
packages has been developed, broadening the application of SNA.

 
Graph and Metrics

Social networks are generally presented in 2 ways. The first one is graphs. Graphs are 
structures that visually share information about social networks.  Mathematical operations 
cannot be processed indirectly with analysis. The other is matrices. Since matrices allow 
for computational operations, detailed information is shared by conducting butchered 
analyses (Streeter & Gillespie, 1992).
Social networks are typologically classified as directed-undirected and binary-valued. If 
there are arrows between the links in the representation of a network, it is defined as a 
directed network; if there are no arrows, it is defined as a non-directional social network 
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(Tunalı, 2016).  The other is classified as valued and binary according to the value of the 
link. The first one is the type that expresses the presence or absence of the links between 
nodes as 0-1 expressed as binary. The other is the type where the numerical value of a 
link indicates the density, strength, frequency, or volume of connections between pairs 
of nodes. This type is called valued (Tunalı, 2016).

Centrality
Centrality is an essential metric that indicates which node has a critical position within 
the network. If an actor has a high centrality value, it shows that this actor holds a central 
position in the network (Bloch, Jackson & Tabaldi, 2023).

In calculating centrality, the nature of the relationship is considered. Centrality is 
calculated based on whether the relationship is directed, undirected, weighted, or 
unweighted. In undirected networks, the degree of a node is the number of connections 
that node has. In directed networks, incoming connections to the node are referred to as 
in-degree centrality, while outgoing connections are referred to as out-degree centrality. 
The sum of the in-degree and out-degree is the total degree of that node.

Degree Centrality
In a network graph, degree centrality is measured by the total amount of direct connections 
to other nodes. It indicates the level of outward connectivity. Higher values suggest greater 
connectivity, indicating how central the node is relative to other nodes in the network 
(Laghridat & Essalih, 2023). In-degree centrality is based on relationships initiated by 
other users towards a user, while out-degree centrality is based on relationships initiated 
by a user towards others. Degree centrality assumes that all neighbors in the network are 
equally important. What matters is the number of neighbors. However, in many cases, if 
a node is connected to powerful nodes, its importance increases.
For undirected networks:

 ● Degree Centrality = Node’s degree (number of connections) / (N-1)
For directed networks, it is divided into in-degree and out-degree centrality:

 ● In-degree Centrality = Number of incoming connections to the node / (N-1)
 ● Out-degree Centrality = Number of outgoing connections from the node / (N-1)

Betweenness Centrality
Betweenness centrality is used to measure a node that plays an ‘intermediary’ role in a 
network (Marin & Wellman, 2011).  If a node is located on the only path that other nodes 
need to traverse, such as communication, connection, transportation, or transaction, then 
this node must be important and is likely to have a high betweenness centrality.

The betweenness centrality CB(v) for a node in a non-directional network is calculated 
by the formula.

(( ))betweeness
s

st

tv st
c vv σ

σ≠ ≠

= ∑

( )( )
( 1) ( 2) / 2

betweeness
betweeness

c vc v
N x N

=
− −

 ● s and t: Other nodes (node pairs) in the network,
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 ● σst  : The total number of shortest paths between nodes s and t,
 ● σst(i): The number of shortest paths between nodes s and t that pass through node 

i
 ● N: The total number of nodes in the network

Closeness centrality
Closeness centrality is a measure of the total distance of a node from other nodes, if the 
length of the shortest paths of node N to other nodes in the network is small, then node N 
has a high closeness centrality (Zamanitajeddin et al., 2024). It refers to the convenience 
and ease of connections between the node of focus and other nodes.
Closeness centrality is calculated according to the following formula.
N: Total number of nodes in the network,
d (v,u): The length of the shortest path between node v and the other node u.

( 1)( )
( , )closeness

u v

Nc v
d v u

≠

−
=
∑

The normalized closeness centrality for an undirected network can be expressed as 
follows.

' ( )( )
( 1)

closeness
closeness

c vc v
N

=
−

Eigenvector Centrality
This metric is based on assigning a relative score to each node and measures how well-
connected a given actor is with other well-connected actors (Codal & Coskun, 2016). The 
main focus of eigenvector centrality is that the power and status of an actor is recursively 
defined by the power and status of its alters. Alters is a term often used in the egocentric 
approach of social network analysis and refers to actors who are directly connected 
to a particular actor, called the ego. What is noteworthy in this centrality measure is 
that the centrality of an individual depends on the centrality of all its neighbors with a 
positive constant. An individual with a high centrality of neighbors will also have a high 
centrality.

Eigenvector centrality is a more detailed version of degree centrality. It assumes that 
not all links have the same importance, taking into account not only the quantity but 
especially the quality of these links.

The eigenvector centrality xi for node i in a network is calculated by the following 
formula.

Eigenvector centrality: ( ) 

1
i jN ij

x x
λ

= ∑ 

xi : Eigenvector centrality for node i.

λ: A constant scaling factor, eigenvalue

N(i): Neighbors of node i

xj : The centrality of node j

This formula states that the centrality of each node is a function of the centralities of 
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its neighbors. The eigenvalue λ is usually chosen to be the largest eigenvalue and the 
eigenvector centrality values are solved to find the eigenvector corresponding to the 
largest eigenvalue of the network.

Pagerank Centrality
PageRank centrality is a special type of eigenvector centrality and is the ranking criterion 
of the popular search engine Google (Tunalı, 2016). The three different factors that 
determine the PageRank of a node are the number of incoming links, the link propensity 
of anchors, and the centrality of anchors (Gençer, 2023).

An Example of a Social Network on Centrality Values

Figure 2
A Sample Social Network Graph     

The edges representing the connections between nodes in the social network shown are 
listed as follows.

Edges: (1, 2); (1, 3); (1, 4); (3, 4); (3, 8); (4, 5); (4, 8); (5, 6); (6, 9); (7, 8); (7, 9)

Average Degree of the Network

First, it is calculated the degrees of the nodes in this network to calculate the average 
degree.

Degree of node 1: 3; Degree of node 2: 1; Degree of node 3: 3; Degree of node 4: 4; 
Degree of node 5: 2; Degree of node 6: 2; Degree of node 7: 3; Degree of node 8: 2; 
Degree of node 9: 2

Total degree of the nodes: 3 + 1 + 3 + 4 + 2 + 2 + 3 + 2 + 2 = 22

Since the total number of nodes is 9, the average degree is: 22 / 9 = 2.44

Table 2 
Centrality Calculations for the Social Network in Figure 1

Node/
Actor

Degree 
Centrality

Closeness 
Centrality

Betweenness 
Centrality

Eigenvector 
Centrality

PageRank 
Centrality

1 0.375 0.471 0.250 0.408 0.135

2 0.125 0.333 0.000 0.143 0.055

3 0.375 0.533 0.095 0.480 0.127

4 0.500 0.615 0.405 0.540 0.167

5 0.250 0.500 0.202 0.231 0.094
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6 0.250 0.421 0.095 0.118 0.099

7 0.250 0.444 0.155 0.185 0.095

8 0.375 0.533 0.262 0.422 0.129

9 0.250 0.381 0.071 0.106 0.099

Table 2 shows centrality calculations regarding Figure 1. 
In terms of degree centrality, node 4 is in the most central position (0.500).
The node with the highest closeness centrality is node 4 (0.615), meaning that node 4 
can reach other nodes in the network at shorter distances. Node A is positioned closest to 
the center, allowing it to connect with other nodes either directly or through short paths, 
which indicates that node 4 plays a key role in the information flow within the network. 
The node with the lowest closeness centrality is node 2 (0.000). This node is located at 
the most peripheral position in the network and must take longer paths to reach other 
nodes. The low closeness centrality of node 2 suggests that it is distant from the center 
of the network and participates less in information flow.
Betweenness centrality shows how much a node acts as a “bridge” between other nodes 
in the network. Calculations reveal that node 4 has the highest betweenness centrality 
value, at 0.405. According to these results, node 4 stands out as the most critical node on 
the shortest paths in the network. Node 2 has a betweenness centrality of zero, indicating 
that it does not act as a bridge between other nodes.
Eigenvector centrality is a measure based on how central a node’s neighbors are. A node 
with high eigenvector centrality is more connected to central neighbors. Node 4, with 
the highest value, stands out as the most central node in the network, indicating that it is 
associated with neighbors who also hold highly central positions.
PageRank centrality calculates the importance of a node based on the centralities of 
the nodes that link to it. Originally used to rank web pages, this method is also widely 
used to identify influential nodes in networks. Node 4 has the highest PageRank value, 
indicating that it is in an important central position in the network. Node 2 has the lowest 
PageRank value, which suggests that its influence within the network is relatively low.

Local Clustering Coefficient
It is the ratio of the number of links between a node and its neighbors to the number of 
possible links they could have. In other words, it is a measure of the degree to which a 
node clusters with its neighbors.
The Local Clustering Coefficient indicates the probability that a node’s neighbors will 
connect with each other. The value ranges from 0 to 1, with 1 indicating that all neighbors 
are connected.
The clustering coefficient Ci for a node i is calculated by the formula.

2 ( )
( ) ( 1)

x numberoftriangles
ccc i dx d

=
−

CCC (i): local clustering coefficient for node i

d= Number of neighbors of the node

triangle= Number of available triangles

The local clustering coefficient of each node in an example social network of Figure 1 is 
calculated and presented in Table 3. 
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Table 3 
Local Clustering Coefficient  

Node 1 2 3 4 5 6 7 8 9

Local 
Clustering 
Coefficient

0.33 0.00 0.67 0.33 0.00 0.00 0.00 0.33 0.00

Node 3 has the highest clustering coefficient with a value of 0.667, indicating that its 
neighbors have strong ties to each other.

For nodes 2, 5, 6, 7, and 9, the clustering coefficient is 0, meaning that there are no 
connections between the neighbors of these nodes.
Whole Network Metrics
Size
The size of a network is determined by the number of actors in that network. When 
we consider a school as a social network, if both students and teachers play the role of 
actors, then all individuals will constitute the size of the network. When considering 
politics, the network size represents the number of people with whom an individual 
discusses political topics.

Average Degree
One of the metrics that defines the overall structure of a network based on degree is the 
average degree of all nodes in the network. This is calculated differently depending on 
whether the network is directed or undirected. Letting ki be the degree of node i, the 
average degree of an undirected network with N nodes and E edges is calculated as 
follows:

Average Degree = 
1 2n

ii

Ek
N N

=∑
Density
The density of a network is equal to the total number of connections divided by the 
number of possible connections. The number of possible connections assumes that each 
person can have a connection with every other person. The normalized range varies 
from 0-1. It represents the extent of communication within the network. Higher numbers 
(above .03) indicate faster information diffusion and greater group cohesion (Aboelela 
et al., 2007).
The density of the network shown in Figure 1 is calculated as the number of available 
edges divided by the maximum number of possible edges.

The density of the network according to the formula density = 
2
( 1)
xE

Nx N −

E= Number of edges; N = Number of nodes

In this network

Total number of nodes N=9

Number of sides E=11

The density is calculated as = (2x11) / 9 x (9-1) = 22 / 72 = 0.306. The density of this 
network corresponds to approximately 31%.
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Centralization
Centralization is based on the extent to which the majority of links are connected to a small 
set of nodes (Scott, 2000). It indicates whether there is an asymmetry in the distribution 
of connections. It indicates the degree to which communication is centralized around a 
single agent or a small group. More centralized groups tend to be more hierarchical in 
nature.
To calculate the centralization value of an example social network plotted in Figure 1, 
the following steps are followed:
 1.Degree Centrality is calculated.

2.Determine the Maximum Degree of Centrality.
3.Centralization Value: The sum of the differences between the degree centrality 
of all nodes and the highest degree centrality.

This sum is divided by the theoretical sum of differences that could have the highest 
degree centrality in the network.

 ● Cmaks: The highest degree centrality (centrality of the node with the highest 
degree).

 ● Ci: Degree centralities of other nodes.

 ● The value in the denominator is used as the theoretical maximum centralization 
value.

The degrees of each node in the network were calculated earlier.

 ● Node degrees: 3,1,3,4,2,2,3,2,2

 ● Highest degree: Cmaks=4

Calculation of centralization

1.Find the differences between Cmax - Ci   for each node.

Table 4 
Calculation of Centralization

c maks- ci c maks- c1 c maks- 
c2

c maks- c3 c maks- 
c4

c maks- 
c5

c maks- 
c6

c maks- 
c7

c maks- 
c8

c maks- 
c9

Difference 4-3 4-1 4-3 4-4 4-2 4-2 4-3 4-2 4-2

Result 1 3 1 0 2 2 1 2 2

Total 14

2.Calculate the theoretical maximum difference sum. In this case, the theoretical 
maximum difference occurs when the degree centrality of all nodes except the 
most central node is zero.

( ) ( 1)maks i maksmaks C C N xC− = −∑ =8×4=32

3.Centralization=14/32=0.438

The centralization value of this network is 0.438.
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Reciprocity
It is defined as the calculation of whether the connections between nodes are reciprocal, 
i.e. bidirectional. This metric, calculated in directed networks, is the ratio of the number 
of node pairs in the network to the number of all possible node pairs. The expression 
“follow to follow”, which is frequently used in social media, refers to the reciprocity 
metric (Cheng et al., 2011).

SNA Software Tools
Tools for social network analysis are predominantly used for constructing networks, 
visualizing and manipulating network structures, conducting qualitative and quantitative/
statistical analyses, detecting communities, and performing predictive analysis. Despite 
the availability of many tools, the most widely used ones include Pajek, Gephi, UCInet, 
NodeXL, R libraries, and NetworkX (Oliveria & Gama, 2011):

 ● Pajek: A free tool designed for analyzing and visualizing large-scale networks.
 ● Gephi: An open-source platform for network manipulation and exploration, 

featuring a three-dimensional render engine for displaying networks that evolve 
in real-time.

 ● UCInet: A commercial tool for social network analysis, which uses Pajek and 
NETDRAW for visualization. It is particularly well-suited for statistical and 
matrix-based analyses.

 ● NodeXL: A free add-in for Microsoft Excel, providing an accessible, user-
friendly way to explore and visualize networks without requiring programming 
knowledge. However, it is not ideal for analyzing large networks.

 ● R libraries (e.g., igraph, sna, tnet, statnet): Free packages within the R 
environment, offering a comprehensive set of tools, including a large array of 
algorithms for community detection, longitudinal network analysis, and two-
mode network analysis, with effective two- and three-dimensional visualization 
options.

NodeXL
NodeXL is mainly used for analyzing networks. It is mostly implemented as an add-
in to Microsoft Excel. With the collection of network data, NodeXL provides quick 
statistics and reporting for people who can use the basic features of Microsoft Excel to 
analyze network data. NodeXL is a highly effective tool for analyzing and visualizing 
a social network. In addition to visualizing the entire network in the form of a graph, it 
can also draw graphs of different social network properties such as Proximity Centrality, 
Betweenness Centrality, Vertex Degree, Vertex PageRank, etc. Together with Nodexl, it 
enables network analysis by collecting data from social media platforms such as Twitter, 
Facebook, YouTube, and Flickr. In addition, topics that are on the agenda on Twitter can 
be analyzed and analyzed.
The analysis process with NodeXL generally consists of the following steps.

 ● Importing data

 ● Data preparation

 ● Grouping with clustering

 ● Calculating metrics

 ● Time series analysis

 ● Text analysis

 ● Identifying the Most Important Elements of the Network
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 ● Visualizing the network

GEPHI
GEPHI is an open-source, independent software for visual and network analysis. The 
primary benefit of utilizing GEPHI for network research is its capability to handle 
extensive data sets or networks. The GEPHI program possesses certain drawbacks. 
Occasionally, the response time for a little task or procedure is excessively prolonged. For 
instance, accessing a file requires considerable time. Given that GEPHI is independent 
open-source software, it offers numerous functionalities. GEPHI is capable of importing 
data from text files (TXT), spreadsheets (CSV), and databases. GEPHI is capable of 
receiving information from various other social network analysis tools. GEPHI facilitates 
the straightforward graphical representation of a network. GEPHI is capable of producing 
network graphs and visual representations.
UCINet and Netdraw
UCINet is a menu-based application for social network analysis (Wu & Duan, 2015). 
UCINet is independent software. In UCINet, all data are represented as matrices. UCINet 
accepts two categories of input and produces two categories of output. The input comprises 
input parameters and datasets, whilst the output consists of output text and datasets. The 
spreadsheet editor is utilized for modifying, inputting new data, and converting UCINet 
data to Excel or SPSS formats. The UCINet spreadsheet accommodates tiny networks. 
For extensive datasets, multiple data formats are provided, accessible through an editor 
known as the dl editor.
UCINet employs Netdraw to facilitate network visualization. Netdraw facilitates various 
layouts for visualization objectives. These encompass isolates, components, subgroups, 
and centrality metrics. It also offers functionalities such as node restoration, color scheme 
adjustment, property visibility toggling, and node size modification, among others.
PAJEK
PAJEK is a software application designed for the visualization and analysis of extensive 
social networks. It is adequate to calculate most centrality measurements. Furthermore, 
functions that require many applications can be stored for subsequent re-analysis. PAJEK 
supports fundamental operations such as subnetwork extraction, identification of linked 
components (strong, weak, connected), determination of shortest pathways, calculation 
of maximum flow, centrality assessment (closeness, betweenness, degree, etc.), fragment 
search, and community detection. The findings generated by PAJEK can be further 
analyzed with R programming and SPSS. PAJEK accommodates bimodal networks, 
temporal networks (networks that evolve over time), acyclic and multi-associative 
networks (many interactions established among the same vertices), and signed networks 
(networks with both negative and positive connections). PAJEK additionally facilitates 
text-mining algorithms for the investigation of social networks (Majeed et al, 2020).
NetworkX
NetworkX is a powerful Python library for graph and network analysis. It is used to 
model and analyze graph structures such as social networks, biological networks, route 
optimization, connectivity analysis and many more. It allows you to analyze nodes and 
edges in network or graph structures. It is advantageous for research and applications 
where new metrics or algorithms need to be developed. Various types of graphs (directed, 
undirected, weighted, etc.) can be easily calculated with NetworkX. It supports reading 
and writing data from various formats (e.g. GraphML, GML, Pajek). Together with 
Matplotlib and other visualization libraries, graph structures can be visualized. In 
summary, NetworkX is a popular tool for both simple and complex network analysis.
R Programming and Packages
The R programming language has many libraries for analyzing social networks. One 
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of these libraries is the igraph package. igraph is a fast, efficient, constantly updated, 
and highly preferred package. Other packages such as sna, tidygraph, and network have 
a large user base, especially among those interested in statistical network modeling 
(Gençer, 2023).
Social Network Visualizer
Social Network Visualizer (SocNetV) is a cross-platform, user-friendly free software 
application for social network analysis and visualization. With SocNetV, the following 
operations can be performed.

 ● Draw social networks with a few clicks on a virtual canvas, upload domain data 
from a file in a supported format (GraphML, GraphViz, Adjacency, EdgeList, 
GML, Pajek, UCINET, etc.), or browse the internet to create a social network of 
connected web pages.

 ● Organize actors and ties through point-and-click, graphs and social network 
properties that can be analyzed.

 ● Generate HTML reports.

 ● Standard graph and network fit metrics such as density, diameter, geodesics and 
distances, connectivity, eccentricity, clustering coefficient, reciprocity, etc.

VOSviewer and Bibliometrix
The 2 tools used for bibliometric analysis are VOSviwer and Bibliometrix. They are used 
to process and analyze data extracted from databases such as Scopus or Web of Science. 
They allow for analysis based on keywords in articles or on the relationships established 
through authors. Bibliometrix is an R package with a programmable structure (Gencer, 
2023).

SNA in Higher Education
Social Network Analysis (SNA) in higher education enables the analysis of relationships 
and interactions between students, academics, and other stakeholders through network 
structures. With this method, information flow, collaboration, interaction patterns, and 
internal dynamics in higher education institutions are analyzed and patterns are revealed. 
Examples of social network analysis in higher education are listed below.
Examining Student Interactions
Academic achievement and social relationships: How students build social networks 
inside and outside the classroom can have an impact on their success. The SNA can be 
used to identify which groups students are more active in and the relationship between 
academic performance and social interaction.
Improving learning environments: Network structures of interactions in group work, 
project teams or online platforms (e.g. LMS) are analyzed. It can be revealed which 
students remain isolated or which groups collaborate more. For example, by analyzing 
the frequency with which students help each other or share information in the classroom, 
academic support mechanisms can be better shaped.
Examining Academic and Interdisciplinary Collaboration
Publication and project collaborations: Networks of articles and projects produced by 
academics together are analyzed. It is revealed which academics play central roles and 
how interdisciplinary collaborations are shaped.
Strengthening research networks: Areas of intra- or inter-institutional collaboration 
can be identified and incentives can be given to units that do not have strong ties. For 
example, by mapping the collaboration network of faculty members in a faculty, joint 
research projects can be proposed for academics who remain disconnected or isolated.
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Analyzing Online Learning Environments
Learning analytics: Students’ interactions with each other or with instructors through 
the LMS (Learning Management System) are analyzed. Student engagement can be 
increased by analyzing forums, discussion groups, and messaging networks.
Identify students at risk of failure: Isolated students can be identified in advance and 
counseling and support services can be provided.
Analysis of Management, Leadership, and Organization Networks
Internal decision-making processes: More effective governance can be achieved by 
analyzing the collaboration and communication structures between administrators, and 
academic and administrative units.
Leadership and information flow: It can be determined which administrators or academic 
units are central in information and decision flow, thus optimizing institutional processes.
Alumni tracking systems: Examine how alumni interact through job and career networks. 
Collaborating with alumni can contribute to the university’s career network.
Mentoring networks: By establishing links between alumni and students, students can 
receive career guidance from alumni.
Policy Development and Performance Measurement
Department and program performance: Strategic plans can be created by examining 
inter-departmental collaboration networks. In addition, according to the network 
structures, it is determined which departments need more collaboration.
Innovation and entrepreneurship ecosystems: By analyzing the university’s innovation 
centers and entrepreneurship networks, the ecosystem can be made to work more 
effectively.
As a result, social network analysis provides a better understanding of the relationships 
between students, academics, and management structures in higher education. In this 
way, it is possible to optimize information flow, increase collaboration, and support 
academic success.

Conclusion and Future Trends
This paper provides a comprehensive overview of the basic principles and objectives 
of Social Network Analysis (SNA) methods and their applicability to different types 
of networks. Various SNA metrics and related tasks are described with respect to the 
different structures of networks. Nowadays, the discovery of network structures in the 
data generated by many applications and the quality of the information extracted from 
these networks is increasing the popularity of network analysis. One of the main reasons 
for this increased interest is the analysis requirements arising from the ever-growing 
and more complex amount of data. At this point, effectively processing, managing, and 
extracting meaningful results from large volumes of data flowing at high speed is one of 
today’s most important challenges. Especially with the proliferation of new technologies 
such as Web 2.0, Internet of Things (IoT), and Industry 4.0, the need for network analysis 
increases and analysis processes become more demanding and challenging. Therefore, 
the development of innovative methods that can cope with high volumes of data in 
network analysis stands out as one of the most current and critical requirements in this 
field.
Current trends in social network analysis are changing rapidly in line with technological 
and social developments. Interest and application areas of social network analysis are 
expanding in areas such as artificial intelligence, data privacy, community analysis, 
sentiment analysis and language processing, ethical issues, location-based social network 
analysis, micro-impact analysis, Multilayer Network analysis, disinformation detection, 
and decentralized networks. These trends indicate that in the future, SNA will become 



 
                                                An Overview of Social Network Analysis: Metrics, Tools and Applications

51Akça Okan YÜKSEL

more effective and have more diverse use cases in both academic and commercial 
applications.
It is also expected that the popularity of SNA will continue to grow, attracting more 
researchers to the field and pushing an increasing number of companies to incorporate 
SNA methods into their business processes and expand their use as strategic tools.

Sample Social Network Analyses
Example 1
Scenario: Let’s examine how metrics (degree centrality, betweenness centrality, closeness 
centrality, eigenvector centrality, local clustering coefficient, density and centralization) 
are calculated based on students’ relationships in a social network of 10 students.
Students: A, B, C, D, E, F, G, H, I, J
Assume that friendship relationships are formed as follows.

 ● A: B, C, D

 ● B: A, E

 ● C: A, D, F

 ● D: A, C, G

 ● E: B, H

 ● F: C, I

 ● G: D, J

 ● H: E

 ● I: F, J

 ● J: G, I

In the sociomatrix formed according to this network of relationships, each row and 
column represents an individual. The corresponding cell indicates whether the individuals 
are connected to each other. It is coded 1 if there is a connection and 0 if there is no 
connection. The sociomatrix created for individuals whose names are coded as A, B, C, 
D, E, F, G, H, I, and J is given in Table 5.

Table 5 
Relationship Matrix

A B C D E F G H I J
A 0 1 1 1 0 0 0 0 0 0
B 1 0 0 0 1 0 0 0 0 0
C 1 0 0 1 0 1 0 0 0 0
D 1 0 1 0 0 0 1 0 0 0
E 0 1 0 0 0 0 0 1 0 0
F 0 0 1 0 0 0 0 0 1 0
G 0 0 0 1 0 0 0 0 0 1
H 0 0 0 0 1 0 0 0 0 0
I 0 0 0 0 0 1 0 0 0 1
J 0 0 0 0 0 0 1 0 1 0

 
The following table shows the formulas for the degrees and the calculated centrality 
values of each node and the local clustering coefficient.
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Table 6
Metric Calculations for Example Network

Degree 
Centrality

Betweenness 
Centrality

Closeness 
Centrality

Eigenvector 
Centrality

Clustering 
Coefficient

Formula

Node
deg ree

DegreeofNodeC
N

=

(( ))betweeness
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st

tv st
c vv σ
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− −
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( ) ( 1)

x numberoftriangles
ccc i dx d
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A 0.33 0.5 0.50 0.49 0.33

B 0.22 0.39 0.41 0.24 0.00

C 0.33 0.28 0.47 0.49 0.33

D 0.33 0.28 0.47 0.49 0.33

E 0.22 0.22 0.32 0.11 0.00

F 0.22 0.17 0.39 0.27 0.00

G 0.22 0.17 0.39 0.27 0.00

H 0.11 0.00 0.25 0.044 0.00

I 0.22 0.06 0.33 0.17 0.00

J 0.22 0.06 0.33 0.17 0.00

The results for the 3 metrics that interpret the whole network (average degree, density 
and centralization) are as follows.

Average Degree

Average Degree = 
(2 )xE

N = (2x11)/10 =2.2

The average degree of this network is calculated as 2.2. This means that each node in 
the network has 2.2 links on average.

Density

The density of a network is calculated as the ratio of the number of available edges to 
the maximum possible number of edges between all nodes in the network.

2
( ( 1))

ED
Nx N

=
−

E: Number of available edges in the network => E=11

N: Number of nodes in the network => N=10

D= (2*11) / (10*9) = 0.244

The density of this network is calculated to be approximately 0.244. This means that 
about 24% of the node pairs in the network are directly connected by an edge.
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Centralization

The centralization value of the network is a measure of the centrality differences of the 
nodes in the network and is calculated by the formula.

Centralization = 
1
( )

( 1) ( 2)

N
maks ii

c c
C

N x N
=

−
=

− −
∑

C: Network centralization value
Cmaks : Degree centrality of the node with the highest degree
Ci : Degree centrality of each node
N: Number of nodes (N=10)
Cmaks= 3

Table 7 
(Cmaks - Ci) Values

A B C D E F G H I J

Ci 3 2 3 3 2 2 2 1 2 2

C maks- Ci 0 1 0 0 1 1 1 2 1 1

Sum of C maks and Ci differences = 0+1+0+0+1+1+1+2+1+1 = 8

Centralization = C = 8/ (9X8) = 0.11

The centralization value of this network is calculated to be approximately 0.111 or 
11.1%. This value indicates that the degree of centralization of the network is quite low 
and that a central structure between nodes is not very obvious.

Example 2
Let’s create a graph of the image for the nodes whose connections are given in Table 8.
Now let us examine the neighborhood matrix (sociomatrix) to show the relationships of 
the nodes. The number 1 in the cells where the rows and columns intersect indicates that 
there is a relationship for the intersecting nodes, while the number 0 indicates that there 
is no relationship.
Table 8
Sociomatrix 

A B C D E F G H I
A 0 1 1 0 0 0 0 0 0
B 1 0 1 0 0 0 0 0 0
C 1 1 0 1 1 0 0 0 0
D 0 0 1 0 1 1 1 0 0
E 0 0 1 1 0 1 1 0 0
F 0 0 0 1 1 0 1 1 0
G 0 0 0 1 1 1 0 1 0
H 0 0 0 0 0 1 1 0 1
I 0 0 0 0 0 0 0 1 0
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For example, when node C is examined, it will be seen that it is related to nodes A, B, 
D and E.

In order to create this matrix in UCINET program, click on Data>Data Editors>Excel 
Matrix Editor and in the editor opened by clicking on Data>Data Editors>Excel Matrix 
Editor, the values seen above should be entered in the rows, columns and cells and saved 
as Ucinet files (*.##h) as foldername. To create the social network in UCINET program 
using this matrix, click on Visualize>NetDraw menu and select the previously saved 
foldername.##h file by clicking the Open button in the NetDraw window. Below is the 
graph of the network formed according to the connections in the given matrix.

Figure 3
Graph Structure for the Sociomatrix is Given in Table 8     
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